logger.debug(f"{vol_crop_seq_common_kwargs=}") # ## Train data = voldata_train labels = vollabels_train volume_shape = data.shape crop_seq_train = VolumeCropSequence( data_volume=data, labels_volume=labels, batch_size=batch_size, meta_crop_generator=MetaCrop3DGenerator( volume_shape=volume_shape, crop_shape=crop_shape, is_2halfd=(model_type == T2SModelType.d2half), x0y0z0_generator=(grid_pos_gen := t2s_volseq.UniformGridPosition.build_from_volume_crop_shapes( volume_shape=volume_shape, crop_shape=crop_shape, random_state=RandomState(args.random_state_seed), )), gt_field=t2s_volseq.GTUniformEverywhere( gt_type=gt_type, grid_position_generator=grid_pos_gen, random_state=RandomState(args.random_state_seed),
volume_shape=volume_shape, crop_shape=crop_shape, random_state=RandomState(args.random_state_seed), ) crop_seq_train = VolumeCropSequence( data_volume=data, labels_volume=labels, batch_size=batch_size, # data augmentation meta_crop_generator=MetaCrop3DGenerator.build_no_augmentation( grid_pos_gen=grid_pos_gen, volume_shape=volume_shape, crop_shape=crop_shape, common_random_state_seed=args.random_state_seed, gt_type=gt_type, is_2halfd=(model_type == T2SModelType.d2half), ), # this volume cropper only returns random crops, # so the number of crops per epoch/batch is w/e i want epoch_size=10, **vol_crop_seq_common_kwargs, meta_crops_hist_path=t2s_model.train_metacrop_history_path, ) # ## Val data = voldata_val labels = vollabels_val