if __name__ == '__main__': print("PIC") """ load data """ # dataset = 'dataset/COIL20_32.txt' # K=5 v=1 # dataset = 'dataset/Isolet.txt' # K=25 v=10 # dataset = 'dataset/Jaffe.txt' # K=15 v=10 # dataset = 'dataset/lung.txt' # K=15 v=10 # dataset = 'dataset/mnist.txt' # K=25 v=1 # dataset = 'dataset/TOX.txt' # K=15 v=10 # dataset = 'dataset/USPS.txt' # K=20 v=1 # data = np.loadtxt(dataset) # fea = data[:, :-1] # labels = data[:, -1] # print("dataset = %s data.shape = %s" % (dataset, fea.shape)) fea, labels = loadData.load_coil100() # K=10 v=1 print("------ Normalizing data ------") # fea = tool.data_Normalized(fea) Normalizer = MinMaxScaler() Normalizer.fit(fea) fea = Normalizer.transform(fea) print("------ Clustering ------") start = time.time() # u = 1 dist = cdist(fea, fea) dist = dist - np.diag(np.diag(dist)) K = 10 v = 1
if __name__ == '__main__': print("PK DPC") # dataset = 'dataset/COIL20_32.txt' # K=10 # dataset = 'dataset/Isolet.txt' # K=5 # dataset = 'dataset/Jaffe.txt' # K=5 # dataset = 'dataset/lung.txt' # K=25 # dataset = 'dataset/mnist.txt' # K=15 # dataset = 'dataset/TOX.txt' # K=10 # dataset = 'dataset/USPS.txt' # K=25 # data = np.loadtxt(dataset) # fea = data[:, :-1] # labels = data[:, -1] # print("dataset = %s data.shape = %s" % (dataset, fea.shape)) fea, labels = loadData.load_coil100() print("------ Normalizing data ------") # fea = tool.data_Normalized(fea) Normalizer = MinMaxScaler() Normalizer.fit(fea) fea = Normalizer.transform(fea) print("------ PCA decomposition ------") # fea,b,c = tool.PCA.pca(fea, 150) pca = PCA(n_components=150) fea = pca.fit_transform(fea) print("fea.shape =", fea.shape) K = 5 groupNumber = len(np.unique(labels))
from sklearn.preprocessing import MinMaxScaler from tool import tool, measure, loadData import time if __name__ == '__main__': print("KROD PIC") print("------ Loading data ------") # data_set = 'dataset/COIL20_32.txt' # K=20 u=1 # data_set = 'dataset/mnist.txt' # K=20 u=1 # data_set = 'dataset/lung.txt' # K=10 u=0.1 # data_set = 'dataset/USPS.txt' # K=20 u=1 # data_set = 'dataset/Isolet.txt' # K=25 u=10 # data_set = 'dataset/TOX.txt' # K=20 u=10 # data_set = 'dataset/Jaffe.txt' # K=10 u=0.1 fea, labels = loadData.load_coil100() # K=25 u=1 v=0.1 # data = np.loadtxt(data_set) # fea = data[:, :-1] # labels = data[:, -1] # print("data_set = %s data.shape = %s" % (data_set, fea.shape)) print("------ Normalizing data ------") # tool.data_Normalized(fea) Normalizer = MinMaxScaler() Normalizer.fit(fea) fea = Normalizer.transform(fea) # u = 1 # dist = tool.rank_dis_c(fea, u) dist = tool.rank_order_dis(fea)