Пример #1
0
def LoadAllEstimators():
    db_public = SqliteDatabase('../data/public_data.sqlite')
    db_gibbs = SqliteDatabase('../res/gibbs.sqlite')

    if not db_gibbs.DoesTableExist('prc_pseudoisomers'):
        nist_regression = NistRegression(db_gibbs)
        nist_regression.Train()

    tables = {
        'alberty': (db_public, 'alberty_pseudoisomers', 'Alberty'),
        'PRC': (db_gibbs, 'prc_pseudoisomers', 'our method (PRC)')
    }
    estimators = {}
    for key, (db, table_name, thermo_name) in tables.iteritems():
        if db.DoesTableExist(table_name):
            estimators[key] = PsuedoisomerTableThermodynamics.FromDatabase(
                db, table_name, name=thermo_name)
        else:
            logging.warning('The table %s does not exist in %s' %
                            (table_name, str(db)))

    estimators['hatzi_gc'] = Hatzi(use_pKa=False)
    #estimators['hatzi_gc_pka'] = Hatzi(use_pKa=True)

    if db.DoesTableExist('bgc_pseudoisomers'):
        estimators['BGC'] = GroupContribution(db=db_gibbs, transformed=True)
        estimators['BGC'].init()
        estimators['BGC'].name = 'our method (BGC)'

    if db.DoesTableExist('pgc_pseudoisomers'):
        estimators['PGC'] = GroupContribution(db=db_gibbs, transformed=False)
        estimators['PGC'].init()
        estimators['PGC'].name = 'our method (PGC)'

    estimators['UGC'] = UnifiedGroupContribution(db=db_gibbs)
    estimators['UGC'].init()
    estimators['UGC'].name = 'our method (UGC)'

    estimators['C1'] = ReactionThermodynamics.FromCsv(
        '../data/thermodynamics/c1_reaction_thermodynamics.csv',
        estimators['alberty'])

    if 'PGC' in estimators:
        estimators['merged'] = BinaryThermodynamics(estimators['alberty'],
                                                    estimators['PGC'])
        estimators['merged_C1'] = BinaryThermodynamics(estimators['C1'],
                                                       estimators['PGC'])

    for thermo in estimators.values():
        thermo.load_bounds('../data/thermodynamics/concentration_bounds.csv')

    return estimators
Пример #2
0
options, _ = MakeOpts().parse_args(sys.argv)
if options.sbml_model_filename == None:
    raise ValueError("Must provide a SBML model")

print 'SBML model filename:', options.sbml_model_filename
print 'CSV output filename:', options.csv_output_filename
print 'KEGG Database filename:', options.kegg_db_filename
print 'Observed Thermodynamics filename:', options.thermo_filename
print 'Thermodynamic Database filename:', options.db_filename
print 'Group Contribution Table Name:', options.gc_table_name

db = SqliteDatabase(options.db_filename)
observed_thermo = PsuedoisomerTableThermodynamics.FromCsvFile(
    options.thermo_filename)
if not db.DoesTableExist(options.gc_table_name):
    raise ValueError('The table %s does not exist in the database. '
                     'Please run the groups.py script and try again.'
                     % options.gc_table_name)
thermo = PsuedoisomerTableThermodynamics.FromDatabase(
    db, options.gc_table_name)
thermo.override_data(observed_thermo)
kegg = Kegg.getInstance()

document = libsbml.readSBML(options.sbml_model_filename)
if document.getNumErrors():
    raise Exception('cannot read SBML model from file %s due to error: %s' % 
                    (options.sbml_model_filename, document.getError(0).getMessage()))
model = document.getModel()
logging.info('Done parsing the model: ' + model.getName())
model_annotation = semanticSBML.annotate.ModelElementsAnnotations(model, suppress_errors=True)