def to_json(self, log_dir, filename): utils.check_dir(log_dir) json_file = os.path.join(log_dir,filename) var_dict = copy.copy(vars(self)) var_dict.pop('meters') #for key in ('viz', 'viz_dict'): # if key in list(var_dict.keys()): # var_dict.pop(key) with open(json_file, 'w') as f: json.dump(var_dict, f, cls=utils.NpEncoder)
def save_checkpoint(state, is_best, log_dir, filename='checkpoint.pth.tar'): utils.check_dir(log_dir) filename = os.path.join(log_dir, filename) torch.save(state, filename) if is_best: shutil.copyfile(filename, os.path.join(log_dir, 'model_best.pth.tar')) fn = os.path.join(log_dir, 'checkpoint_epoch{}.pth.tar') torch.save(state, fn.format(state['epoch'])) if (state['epoch'] - 1) % 5 != 0: #remove intermediate saved models, e.g. non-modulo 5 ones if os.path.exists(fn.format(state['epoch'] - 1)): os.remove(fn.format(state['epoch'] - 1)) state['exp_logger'].to_json(log_dir=log_dir, filename='logger.json')
def init_output_env(_config, root_dir, log_dir, path_dataset): utils.check_dir(os.path.join(root_dir, 'runs')) utils.check_dir(log_dir) utils.check_dir(path_dataset) with open(os.path.join(log_dir, 'config.json'), 'w') as f: json.dump(_config, f)
def init_output_env(_config, root_dir, log_dir, path_dataset): utils.check_dir(os.path.join(root_dir, "runs")) utils.check_dir(log_dir) utils.check_dir(path_dataset) with open(os.path.join(log_dir, "config.json"), "w") as f: json.dump(_config, f)