Пример #1
0
def methods_02_lpa( input_dir, verbose ):

    cenc_dirs = cenc.directories( input_dir)

    wm_lesions_dir       = cenc_dirs['wmlesions']['dirs']['root']
    wm_lesions_lpa_dir   = cenc_dirs['wmlesions']['dirs']['lpa']

    util.mkcd_dir( [ cenc_dirs['wmlesions']['dirs']['lpa'] ], True)

    util.copy_inputs( [ os.path.join( cenc_dirs['wmlesions']['dirs']['register'], 't2flair_Affine_nu__t2flair_Warped.nii.gz') ],
                    cenc_dirs['wmlesions']['dirs']['lpa'] )

    glob_files =  glob.glob('*.gz')

    for ii in glob_files:
      os.system('gunzip ' + ii)
      os.chmod( str.replace(ii, '.gz',''), stat.S_IRUSR | stat.S_IRGRP | stat.S_IWUSR | stat.S_IWGRP)


    # Run Matlab

    matlab_run_command =  "ps_LST_lpa('" + os.path.join( cenc_dirs['wmlesions']['dirs']['lpa'], 't2flair_Affine_nu__t2flair_Warped.nii') + "',''); exit;"

    command = [ 'matlab', '-nojvm',  '-nosplash', '-nodesktop', '-r', matlab_run_command ]

    util.iw_subprocess( command, verbose, verbose, False)

    os.chdir(cenc_dirs['wmlesions']['dirs']['lpa'])

    for ii in glob.glob('*.nii'):
      os.system('gzip ' + ii)
      os.chmod( str.replace(ii, '.nii','.nii.gz'), stat.S_IRUSR | stat.S_IRGRP | stat.S_IWUSR | stat.S_IWGRP)
Пример #2
0
def ants_register(input_file):

     # antsRegistration call:
     #--------------------------------------------------------------------------------------
     if False:

          # I am having problems callling the interface.  Same problem of bad interface.

          command = ['antsRegistration', '--dimensionality', 3, '--float', 0, 
                     '--output', '[', 'mt_Affine_nu__' + input_file +'_,', 
                     'mt_Affine_nu__' + input_file + '_Warped.nii.gz,', 
                     'mt_Affine_nu__' + input_file + '_InverseWarped.nii.gz', ']', 
                     '--interpolation', 'Linear', 
                     '--use-histogram-matching', 0,
                     '--winsorize-image-intensities', [0.005,0.995],
                     '--initial-moving-transform', '[', 'nu.nii.gz,' + input_file + '.nii.gz,', 1, ']',
                     '--transform', 'Rigid[0.1]',
                     '--metric', 'MI[nu.nii.gz,mt_m1.nii.gz,1,32,Regular,0.25]', 
                     '--convergence', '[1000x500x250x0,1e-6,10]',
                     '--shrink-factors', '8x4x2x1',
                     '--smoothing-sigmas', '3x2x1x0vox', 
                     '--transform', 'Affine[0.1]',
                     '--metric', 'MI[nu.nii.gz,' + input_file + '.nii.gz,1,32,Regular,0.25]',
                     '--convergence', '[1000x500x250x0,1e-6,10]', 
                     '--shrink-factors', '8x4x2x1', 
                     '--smoothing-sigmas', '3x2x1x0vox'
                     ]
     #--------------------------------------------------------------------------------------

      # I am having problems callling the interface.  Same problem of bad interface.
     if False:
          reg = Registration()
          reg.inputs.fixed_image = 'nu.nii.gz'
          reg.inputs.moving_image = input_file + '.nii.gz'
          reg.inputs.output_transform_prefix = "t2flair_Affine_nu__" + input_file + "_"
          reg.inputs.transforms = ['Affine']
          reg.inputs.transform_parameters = [(2.0,), (0.25, 3.0, 0.0)]
          reg.inputs.number_of_iterations = [[1000,500,200,100]]
          reg.inputs.dimension = 3
          reg.inputs.write_composite_transform = False
          reg.inputs.collapse_output_transforms = False
          reg.inputs.initialize_transforms_per_stage = False
          reg.inputs.metric = ['MI']
          reg.inputs.metric_weight = [1]
          reg.inputs.radius_or_number_of_bins = [32]
          reg.inputs.sampling_strategy = ['Random']
          reg.inputs.sampling_percentage = [0.05]
          reg.inputs.convergence_threshold = [1.e-10]
          reg.inputs.convergence_window_size = [10]
          reg.inputs.smoothing_sigmas = [[3,2,1,0]]
          reg.inputs.sigma_units = ['vox']
          reg.inputs.shrink_factors = [[8,4,2,1]]
          reg.inputs.use_estimate_learning_rate_once = [True]
          reg.inputs.use_histogram_matching = [True] # This is the default
          reg.inputs.output_warped_image = 't2flair_Affine_nu__' + input_file + '.nii.gz'
          reg.inputs.terminal_output='stream'
          print(reg.cmdline)
          # reg.run()


     # This simple command appears to work. 
     command = ['antsRegistrationSyNQuick.sh', '-d', '3', '-m', input_file + '.nii.gz', '-r', 'nu.nii.gz',
                '-f', 'nu.nii.gz', '-t', 'a', '-o', 't2flair_Affine_nu__' + input_file + '_' 
                ]

     util.iw_subprocess( command, True, True, False)

     return
Пример #3
0
def methods_03_stats(input_dir, lower_threshold=0.5, upper_threshold=numpy.inf,  min_lesion_volume_voxels=10, verbose=False):

    cenc_dirs = cenc.directories(input_dir)

    wm_lesions_dir = cenc_dirs['wmlesions']['dirs']['root']
    wm_lesions_lpa_dir = cenc_dirs['wmlesions']['dirs']['lpa']

    util.mkcd_dir([cenc_dirs['wmlesions']['dirs']['stats']], True)

    wm_lesions_stats_filename =  os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_labels.csv')
    wm_lesions_pmap_stats_filename =  os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_pmap.csv')

    # Mask LPA Probability Mask and remove NaN

    command = [['fslmaths', os.path.join(cenc_dirs['wmlesions']['dirs']['lpa'], 'ples_lpa_mt2flair_Affine_nu__t2flair_Warped.nii.gz'),
                '-mas', os.path.join(cenc_dirs['wmlesions']['dirs']['input'], 'mask.nii.gz'), '-nan',
                os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_pmap.nii.gz')
                ]]

    for ii in command:
      util.iw_subprocess(ii, verbose, verbose, False)


    # Create labels file from LPA probability map

    labels.label_connected_components( os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_pmap.nii.gz'),
                                       os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_labels.nii.gz'),
                                       lower_threshold, upper_threshold )

    # Measure properties of labels
    labels.properties(os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_labels.nii.gz'),
                   None, False, ['volume_mm3'],
                   wm_lesions_stats_filename,
                   limits_volume_voxels=[min_lesion_volume_voxels, numpy.inf],
                   limits_bb_volume_voxels=[0, numpy.inf], limits_fill_factor=[0, 1], sort='volume_mm3',
                   verbose=verbose, verbose_nlines=20)

    # Keep labels greater than 10 mm^3.  Limit is set above
    labels.keep(os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_labels.nii.gz'),
                      [],
                      wm_lesions_stats_filename,
                      os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_labels.nii.gz')
                      )
    #  1) Create a WM Lesions mask
    #  2) Mask LPA Registered T2 FLAIR

    command = [ ['fslmaths', os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_labels.nii.gz'),
                 '-bin', os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_mask.nii.gz')
                 ],

                ['fslmaths',
                 os.path.join(cenc_dirs['wmlesions']['dirs']['lpa'], 'mt2flair_Affine_nu__t2flair_Warped.nii.gz'),
                 '-mas', os.path.join(cenc_dirs['wmlesions']['dirs']['input'], 'mask.nii.gz'),
                 os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_t2flair.nii.gz')
                 ]
                ]

    for ii in command:
      util.iw_subprocess(ii, verbose, verbose, False)
 
    # Measure Pmaps stats labels
    df_pmap_measure = labels.measure( os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_labels.nii.gz'),
                                      os.path.join(cenc_dirs['wmlesions']['dirs']['stats'], 'wmlesions_lpa_pmap.nii.gz'))

    df_pmap_measure.to_csv(wm_lesions_pmap_stats_filename, index=False)                 

   # Write out JSON file with RedCap Instrument
    methods_write_json_redcap_instrument(input_dir, wm_lesions_stats_filename, wm_lesions_pmap_stats_filename, verbose)