def main(): results_dir = "../01_results/CNN2D" createfolder(results_dir) for input_frames in [10, 9, 8, 7, 6, 5]: results_file = os.path.join( results_dir, "BMSE_f.{:02d}_x.{:02d}.txt".format(18, input_frames)) print(results_file) run(results_file=results_file, input_frames=input_frames, output_frames=18, loss_function="BMSE", max_epochs=100, device=device1)
def main(): results_dir = "../01_results/CNN2D" createfolder(results_dir) for forecast_t in range(1, 4): for x_tsteps in range(3, 10): results_file = os.path.join( results_dir, "BMSE_f.{:02d}_x.{:02d}.txt".format(forecast_t, x_tsteps)) run(results_file=results_file, x_tsteps=x_tsteps, forecast_t=forecast_t, loss_function="BMSE", max_epochs=1, device=device)
def main(): results_dir = "../01_results/CNN2D_En_De_Fc" createfolder(results_dir) for forecast_t in range(1, 4): for x_tsteps in range(3, 7): results_file = os.path.join( results_dir, "BMSE_x.{:02d}_f.{:02d}.txt".format(x_tsteps, forecast_t)) print(results_file) run(results_file=results_file, x_tsteps=x_tsteps, forecast_t=forecast_t, loss_function="BMSE", max_epochs=50, device=device1)
def main(): output_frames = 18 channel_factor = 2 input_frames = 10 results_dir = "../01_results/ConvGRUv2_c.{:d}".format(channel_factor) createfolder(results_dir) results_name = os.path.join( results_dir, "BMSE_f.{:02d}_x.{:02d}.txt".format(output_frames, input_frames)) print(results_name) run(results_name, channel_factor=channel_factor, input_frames=input_frames, output_frames=output_frames, loss_function="BMSE", max_epochs=100, device=args.device)
def main(): output_frames = 18 for channel_factor in [1, 2, 4, 8]: for input_frames in range(5, 11): results_dir = "../01_results/ConvGRU_v1_c.{:d}".format( channel_factor) createfolder(results_dir) results_name = os.path.join( results_dir, "BMSE_f.{:02d}_x.{:02d}.txt".format(output_frames, input_frames)) print(results_name) run(results_name, channel_factor, input_frames=input_frames, output_frames=output_frames, loss_function="BMSE", max_epochs=50, device=args.device)
def main(): if args.root_dir == None: print("Please set the directory of root data ") return elif args.ty_list_file == None: print("Please set typhoon list file") return elif args.result_dir == None: print("Please set the directory of the result") return else: # set the parameters of the experiment output_frames = 18 channel_factor = 2 input_frames = 10 result_dir = os.path.join(args.result_dir,"I{:d}_F{:d}".format(args.I_shape[0],args.F_shape[0]),"convGRU_c.{:d}".format(channel_factor)) createfolder(result_dir) result_name = os.path.join(result_dir,"BMSE_f{:02d}_x{:02d}_w{:.5f}.txt".format(output_frames,input_frames,args.weight_decay)) print(result_name) run(result_name=result_name, channel_factor=channel_factor, input_frames=input_frames, output_frames=output_frames, loss_function=BMSE, max_epochs=100, device=args.device)
decoder_stride = [1,2,2,2,2,1] decoder_padding = [0,1,1,1,1,1] Net = model(encoder_input, encoder_hidden, encoder_kernel, encoder_n_layer, encoder_stride, encoder_padding, decoder_input, decoder_hidden, decoder_kernel, decoder_n_layer, decoder_stride, decoder_padding, batch_norm=batch_norm).to(device) # print(Net) # Train process info = "|CNN2D| Forecast frames: {:02d}, Input frames: {:02d} |".format(output_frames, input_frames) print("="*len(info)) print(info) print("="*len(info)) train(net=Net, trainloader=trainloader, testloader=testloader, result_name=result_name, max_epochs=max_epochs, loss_function=loss_function, device=device) if __name__ == "__main__": output_frames = args.output_frames channel_factor = args.channel_factor input_frames = args.input_frames result_dir=os.path.join(args.result_dir, 'cnn2D_i{:d}_o{:d}_c{:d}'.format(input_frames,output_frames,channel_factor), 'I{:d}_F{:d}'.format(args.I_shape[0],args.F_shape[0])) print(" [The path of the result folder]:", result_dir) createfolder(result_dir) result_name = os.path.join(result_dir,"BMSE_f.{:02d}_x.{:02d}.txt".format(output_frames, input_frames)) print(result_name) run(result_name=result_name, channel_factor=channel_factor, input_frames=input_frames, output_frames=output_frames, loss_function=BMSE, max_epochs=50, batch_norm=args.batch_norm, device=args.device)