Пример #1
0
def _get_slices_dim_list(pc_folder, file_list_txt):
    center_slices_x = []
    center_slices_y = []
    center_slices_z = []
    data_folder = DataFolder(pc_folder, file_list_txt)
    for file_idx in range(show_pc_number):
        data_folder.print_idx(file_idx)
        file_path = data_folder.get_file_path(file_idx)
        scan = ScanWrapper(file_path)
        slice_x, slice_y, slice_z = scan.get_center_slices()
        center_slices_x.append(slice_x)
        center_slices_y.append(slice_y)
        center_slices_z.append(slice_z)

    return center_slices_x, center_slices_y, center_slices_z
Пример #2
0
class AbstractParallelRoutine:
    def __init__(self, config, in_folder, file_list=None):
        self._config = config
        self._in_data_folder = DataFolder(in_folder, file_list)
        # self._num_processes = config['num_processes']
        self._num_processes = 1

    def run_parallel(self):
        pool = Pool(processes=self._num_processes)
        chunk_list = self._in_data_folder.get_chunks_list(self._num_processes)
        result_obj_list = [
            pool.apply_async(self._run_chunk, (file_idx_chunk, ))
            for file_idx_chunk in chunk_list
        ]
        result_list = []
        for thread_idx in range(len(result_obj_list)):
            result_obj = result_obj_list[thread_idx]
            result_obj.wait()
            logger.info(
                f'Thread with idx {thread_idx} / {len(result_obj_list)} is completed'
            )
            result_list = result_list + result_obj.get()

        return result_list

    def run_non_parallel(self, idx_list=None):
        run_idx_list = idx_list if idx_list else range(self.num_files())
        for idx in run_idx_list:
            self._in_data_folder.print_idx(idx)
            self._run_single_scan(idx)
            # print('Done', flush=True)

    def _run_single_scan(self, idx):
        raise NotImplementedError

    def _run_chunk(self, chunk_list):
        result_list = []
        for idx in chunk_list:
            self._in_data_folder.print_idx(idx)
            result = self._run_single_scan(idx)
            result_list.append(result)
        return result_list

    def num_files(self):
        return self._in_data_folder.num_files()
Пример #3
0
class AverageScans:
    def __init__(self,
                 config,
                 in_folder=None,
                 data_file_txt=None,
                 in_data_folder_obj=None):
        self._data_folder = None
        if in_data_folder_obj is None:
            self._data_folder = DataFolder(in_folder, data_file_txt)
        else:
            self._data_folder = in_data_folder_obj
        self._standard_ref = ScanWrapper(self._data_folder.get_first_path())
        self._num_processes = config['num_processes']

    def get_average_image_union(self, save_path):
        im_shape = self._get_std_shape()

        average_union = np.zeros(im_shape)
        average_union.fill(np.nan)
        non_null_mask_count_image = np.zeros(im_shape)

        chunk_list = self._data_folder.get_chunks_list(self._num_processes)

        pool = Pool(processes=self._num_processes)

        print('Average in union')
        print('Step.1 Summation')
        image_average_union_result_list = [
            pool.apply_async(self._sum_images_union, (file_idx_chunk, ))
            for file_idx_chunk in chunk_list
        ]
        for thread_idx in range(len(image_average_union_result_list)):
            result = image_average_union_result_list[thread_idx]
            result.wait()
            print(
                f'Thread with idx {thread_idx} / {len(image_average_union_result_list)} is completed'
            )
            print('Adding to averaged_image...')
            averaged_image_chunk = result.get()
            average_union = self._add_image_union(average_union,
                                                  averaged_image_chunk)
            print('Done.')

        print('Step.2 Non-nan counter')
        non_null_mask_count_result = [
            pool.apply_async(self._sum_non_null_count, (file_idx_chunk, ))
            for file_idx_chunk in chunk_list
        ]
        for thread_idx in range(len(non_null_mask_count_result)):
            result = non_null_mask_count_result[thread_idx]
            result.wait()
            print(
                f'Thread with idx {thread_idx} / {len(non_null_mask_count_result)} is completed'
            )
            print('Adding to averaged_image...')
            averaged_image_chunk = result.get()
            non_null_mask_count_image = np.add(non_null_mask_count_image,
                                               averaged_image_chunk)
            print('Done.')

        average_union = np.divide(average_union,
                                  non_null_mask_count_image,
                                  out=average_union,
                                  where=non_null_mask_count_image > 0)

        self._standard_ref.save_scan_same_space(save_path, average_union)
        print('Done.')

    def _sum_images_union(self, chunk_list):
        print('Sum images, union non-null region. Loading images...')
        im_shape = self._get_std_shape()
        sum_image = np.zeros(im_shape)
        sum_image.fill(np.nan)

        for id_file in chunk_list:
            file_path = self._data_folder.get_file_path(id_file)
            self._data_folder.print_idx(id_file)

            im = nib.load(file_path)
            im_data = im.get_data()
            sum_image = self._add_image_union(sum_image, im_data)

        return sum_image

    def _sum_non_null_count(self, chunk_list):
        print('Count non-null per voxel. Loading images...')
        im_shape = self._get_std_shape()
        sum_image = np.zeros(im_shape)

        for id_file in chunk_list:
            file_path = self._data_folder.get_file_path(id_file)
            self._data_folder.print_idx(id_file)
            im = nib.load(file_path)
            im_data = im.get_data()

            sum_image = np.add(sum_image,
                               1,
                               out=sum_image,
                               where=np.logical_not(np.isnan(im_data)))

        return sum_image

    def _get_std_shape(self):
        return self._standard_ref.get_data().shape

    @staticmethod
    def _add_image_inter(image1, image2):
        return np.add(image1,
                      image2,
                      out=np.full_like(image1, np.nan),
                      where=np.logical_not(
                          np.logical_or(np.isnan(image1), np.isnan(image2))))

    @staticmethod
    def _add_image_union(image1, image2):
        add_image = np.full_like(image1, np.nan)
        add_image[np.logical_not(
            np.logical_and(np.isnan(image1), np.isnan(image2)))] = 0

        add_image = np.add(add_image,
                           image1,
                           out=add_image,
                           where=np.logical_not(np.isnan(image1)))
        add_image = np.add(add_image,
                           image2,
                           out=add_image,
                           where=np.logical_not(np.isnan(image2)))

        return add_image

    @staticmethod
    def sum_non_null_count(file_list, in_folder):
        print('Count non-null per voxel. Loading images...')
        im_temp = nib.load(os.path.join(in_folder, file_list[0]))
        im_temp_data = im_temp.get_data()

        sum_image = np.zeros_like(im_temp_data)

        for id_file in range(len(file_list)):
            file_name = file_list[id_file]
            print('%s (%d/%d)' % (file_name, id_file, len(file_list)))
            file_path = os.path.join(in_folder, file_name)
            im = nib.load(file_path)
            im_data = im.get_data()

            sum_image = np.add(sum_image,
                               1,
                               out=sum_image,
                               where=np.logical_not(np.isnan(im_data)))

        return sum_image