Пример #1
0
else:
    sep = "/"

guide = CONFIG_PATH + sep + "Hui_SuperProject" + sep + "MovDict.json"
guide_dict = read_json(guide).to_dict()
example_path = CONFIG_PATH + sep + "Hui_SuperProject" + sep + "Data_Examples"
key = 15

features_path = "D:\PhD\Data\HuisData\Dataset1\FeatureExtracted\Features_tsfel_HuiData"
filename = "features_500_15.npz"
tag = 8
sub = 1
a = 10000
b = 45000
begin_feat = 5000
all_signals = loadH5(example_path + sep + guide_dict[key]["file"])[a:b:sub, :]
or_signal = all_signals[:, tag]
ref_signal = all_signals[:, -1]

ssts_distance(or_signal)

file = load_npz_featuresHui(features_path + sep + filename)

feature_set = load_featuresbydomain(file, features_tag=tag)
features_temp = np.array(feature_set["featurebydomain"]["temp"])[:, a:b:sub]
features_stat = np.array(feature_set["featurebydomain"]["stat"])[:, a:b:sub]
features_spec = np.array(feature_set["featurebydomain"]["spec"])[:, a:b:sub]

features_t_norm = StandardScaler().fit_transform(features_temp)
# # features_t_norm = matrix_norm(features_temp)
# # print(features_t_norm)
Пример #2
0
    for i in range(len(corpus)):
        # labels = np.append(labels, lda_model[corpus[i]][0][0])
        topics = lda_model[corpus[i]]
        topics.sort(key=get_key, reverse=True)
        labels = np.append(labels, np.repeat(topics[0][0], win_size))
        print(topics)
        # print(lda_model[corpus_i])

    return labels[:-ind_end]


guide = CONFIG_PATH + "/Hui_SuperProject/MovDict.json"
guide_dict = read_json(guide).to_dict()
example_path = CONFIG_PATH + "/Hui_SuperProject/Data_Examples/"

signal = loadH5(example_path + "arthrokinemat_2018_06_03_00_08_52.h5")

fs = 1000
b = 4
acc1 = signal[b * fs:, 0]
acc1_sm = mean_norm(acc1)
acc1_sm = smooth(abs(acc1_sm), 1000)
acc1_sm = acc1_sm[::50]

# plt.plot(acc1_sm)
# plt.show()

acc_str = Connotation2(acc1_sm)
print(acc_str)
# lsa_labels = movingLSA(acc_str)
lda_labels = movingLDA(acc_str, win_size=50)
Пример #3
0
wave3_conc_str_tpl = runLengthEncoding(wave3_str)

# ax1 = plt.subplot(1,1,1)
# # plot_textcolorized(wave3, wave3_conc_str_tpl[2], ax1)
# plot_textcolorized(wave3, wave3_str, ax1)
# plt.show()

# ax1 = plt.subplot(1,1,1)
# plot_textcolorized(wave3, wave3_str, ax1)
# plt.show()

#Exercise 4 - Test this new approach on other signals
from tools.processing_tools import *
example_path = r"D:\PhD\Code\Hui_SuperProject\Data_Examples\\"

signalHui1 = loadH5(example_path + "arthrokinemat_2018_06_02_23_51_55.h5")

#pre process
ch1 = smooth(mean_norm(signalHui1[:, 5]), 2000)
ch1 = ch1[1000:]

amp_level = AmplitudeTrans(ch1, 2, string.ascii_uppercase, method="quantiles")

ampdiff_str = AmpChange(ch1, 0.75, "absolute")

speed_str = D1Speed(ch1, 0.75)

sign_str = SignConnotation(ch1)

wave3_str = addArrayofStrings([sign_str, ampdiff_str, speed_str])