Пример #1
0
# Define formats for storing the sparse matrix and dense vectors.
csr = pt.format([dense, compressed])
dv = pt.format([dense])

# Load a sparse matrix stored in the matrix market format) and store it
# as a CSR matrix.  The matrix in this test is a reduced version of the data
# downloaded from here:
# https://www.cise.ufl.edu/research/sparse/MM/Boeing/pwtk.tar.gz
# In order to run the program using the matrix above, you can download the
# matrix and replace this path to the actual path to the file.
A = pt.read(os.path.join(_SCRIPT_PATH, "data/pwtk.mtx"), csr)

# These two lines have been modified from the original program to use static
# data to support result comparison.
x = pt.from_array(np.full((A.shape[1], ), 1, dtype=np.float64))
z = pt.from_array(np.full((A.shape[0], ), 2, dtype=np.float64))

# Declare the result to be a dense vector
y = pt.tensor([A.shape[0]], dv)

# Declare index vars
i, j = pt.get_index_vars(2)

# Define the SpMV computation
y[i] = A[i, j] * x[j] + z[i]

##########################################################################

# Perform the SpMV computation and write the result to file
with tempfile.TemporaryDirectory() as test_dir:
Пример #2
0
import filecmp
import numpy as np
import os
import sys
import tempfile

_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(_SCRIPT_PATH)

from tools import mlir_pytaco_api as pt
from tools import testing_utils as utils

i, j, k = pt.get_index_vars(3)

# Set up dense matrices.
A = pt.from_array(np.full((8, 8), 2.0, dtype=np.float32))
B = pt.from_array(np.full((8, 8), 3.0, dtype=np.float32))

# Set up sparse matrices.
S = pt.tensor([8, 8], pt.format([pt.compressed, pt.compressed]))
X = pt.tensor([8, 8], pt.format([pt.compressed, pt.compressed]))
Y = pt.tensor([8, 8], pt.compressed)  # alternative syntax works too

S.insert([0, 7], 42.0)

# Define the SDDMM kernel. Since this performs the reduction as
#   sum(k, S[i, j] * A[i, k] * B[k, j])
# we only compute the intermediate dense matrix product that are actually
# needed to compute the result, with proper asymptotic complexity.
X[i, j] = S[i, j] * A[i, k] * B[k, j]
Пример #3
0
import filecmp
import numpy as np
import os
import sys
import tempfile

_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(_SCRIPT_PATH)

from tools import mlir_pytaco_api as pt
from tools import testing_utils as utils

i, j, k = pt.get_index_vars(3)

# Set up dense matrices.
A = pt.from_array(np.full((8, 8), 2.0))
B = pt.from_array(np.full((8, 8), 3.0))

# Set up sparse matrices.
S = pt.tensor([8, 8], pt.format([pt.compressed, pt.compressed]))
X = pt.tensor([8, 8], pt.format([pt.compressed, pt.compressed]))
Y = pt.tensor([8, 8], pt.compressed)  # alternative syntax works too

S.insert([0, 7], 42.0)

# Define the SDDMM kernel. Since this performs the reduction as
#   sum(k, S[i, j] * A[i, k] * B[k, j])
# we only compute the intermediate dense matrix product that are actually
# needed to compute the result, with proper asymptotic complexity.
X[i, j] = S[i, j] * A[i, k] * B[k, j]
Пример #4
0
dense = pt.dense

# Define formats for storing the sparse tensor and dense matrices.
csf = pt.format([compressed, compressed, compressed])
rm = pt.format([dense, dense])

# Load a sparse three-dimensional tensor from file (stored in the FROSTT
# format) and store it as a compressed sparse fiber tensor. We use a small
# tensor for the purpose of testing. To run the program using the data from
# the real application, please download the data from:
# http://frostt.io/tensors/nell-2/
B = pt.read(os.path.join(_SCRIPT_PATH, "data/nell-2.tns"), csf)

# These two lines have been modified from the original program to use static
# data to support result comparison.
C = pt.from_array(np.full((B.shape[1], 25), 1, dtype=np.float64))
D = pt.from_array(np.full((B.shape[2], 25), 2, dtype=np.float64))

# Declare the result to be a dense matrix.
A = pt.tensor([B.shape[0], 25], rm)

# Declare index vars.
i, j, k, l = pt.get_index_vars(4)

# Define the MTTKRP computation.
A[i, j] = B[i, k, l] * D[l, j] * C[k, j]

##########################################################################

# Perform the MTTKRP computation and write the result to file.
with tempfile.TemporaryDirectory() as test_dir:
# RUN: SUPPORTLIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s

import numpy as np
import os
import sys

_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(_SCRIPT_PATH)
from tools import mlir_pytaco_api as pt

i, j = pt.get_index_vars(2)
# Both tensors are true dense tensors.
A = pt.from_array(np.full([2, 3], 1, dtype=np.float64))
B = pt.from_array(np.full([2, 3], 2, dtype=np.float64))
# Define the result tensor as a true dense tensor. The parameter is_dense=True
# is an MLIR-PyTACO extension.
C = pt.tensor([2, 3], dtype=pt.float64, is_dense=True)

C[i, j] = A[i, j] + B[i, j]

# CHECK: [3. 3. 3. 3. 3. 3.]
print(C.to_array().reshape(6))