Пример #1
0
def plot_central_and_systematics(channel, systematics, exclude=[], suffix='altogether'):
    global variable, variables_latex, k_value, b_tag_bin, maximum, ttbar_generator_systematics

    canvas = Canvas(width=700, height=500)
    canvas.SetLeftMargin(0.15)
    canvas.SetBottomMargin(0.15)
    canvas.SetTopMargin(0.05)
    canvas.SetRightMargin(0.05)
    legend = plotting.create_legend(x0=0.6, y1=0.5)
    
    hist_data_central = read_xsection_measurement_results('central', channel)[0]['unfolded']
    
    hist_data_central.GetXaxis().SetTitle(variables_latex[variable] + ' [GeV]')
    hist_data_central.GetYaxis().SetTitle('#frac{1}{#sigma} #frac{d#sigma}{d' + variables_latex[variable] + '} [GeV^{-1}]')
    hist_data_central.GetXaxis().SetTitleSize(0.05)
    hist_data_central.GetYaxis().SetTitleSize(0.05)
    hist_data_central.SetMinimum(0)
    hist_data_central.SetMaximum(maximum[variable])
    hist_data_central.SetMarkerSize(1)
    hist_data_central.SetMarkerStyle(20)

    gStyle.SetEndErrorSize(20)
    hist_data_central.Draw('P')
    legend.AddEntry(hist_data_central, 'measured (unfolded)', 'P')
    
    for systematic in systematics:
        if systematic in exclude or systematic == 'central':
            continue

        hist_data_systematic = read_xsection_measurement_results(systematic, channel)[0]['unfolded']
        hist_data_systematic.SetMarkerSize(0.5)
        hist_data_systematic.SetMarkerStyle(20)
        colour_number = systematics.index(systematic)+1
        if colour_number == 10:
            colour_number = 42
        hist_data_systematic.SetMarkerColor(colour_number)
        hist_data_systematic.Draw('same P')
        legend.AddEntry(hist_data_systematic, systematic, 'P')
    
    legend.Draw()
    
    cms_label, channel_label = get_cms_labels(channel)
    cms_label.Draw()
    
    channel_label.Draw()
    
    canvas.Modified()
    canvas.Update()
    
    path = output_folder + str(measurement_config.centre_of_mass) + 'TeV/' + variable
    make_folder_if_not_exists(path)
    
    for output_format in output_formats:
        canvas.SaveAs(path + '/normalised_xsection_' + channel + '_' + suffix + '_kv' + str(k_value) + '.' + output_format)
Пример #2
0
def make_template_plots(histograms, category, channel):
    global variable, output_folder
    
    for variable_bin in variable_bins_ROOT[variable]:
        path = output_folder + str(measurement_config.centre_of_mass) + 'TeV/' + variable + '/' + category + '/fit_templates/'
        make_folder_if_not_exists(path)
        plotname = path + channel + '_templates_bin_' + variable_bin
        #check if template plots exist already
        for output_format in output_formats:
            if os.path.isfile(plotname + '.' + output_format):
                continue
        canvas = Canvas(width=700, height=500)
        canvas.SetLeftMargin(0.15)
        canvas.SetBottomMargin(0.15)
        canvas.SetTopMargin(0.05)
        canvas.SetRightMargin(0.05)
        legend = plotting.create_legend(x0=0.7, y1=0.8)
        h_signal = histograms[variable_bin]['signal']
        h_VJets = histograms[variable_bin]['V+Jets']
        h_QCD = histograms[variable_bin]['QCD']
        
        h_signal.GetXaxis().SetTitle('Lepton #eta')
        h_signal.GetYaxis().SetTitle('Normalised Events')
        h_signal.GetXaxis().SetTitleSize(0.05)
        h_signal.GetYaxis().SetTitleSize(0.05)
        h_signal.SetMinimum(0)
        h_signal.SetMaximum(0.2)
        h_signal.SetLineWidth(2)
        h_VJets.SetLineWidth(2)
        h_QCD.SetLineWidth(2)
        h_signal.SetLineColor(kRed + 1)
        h_VJets.SetLineColor(kBlue)
        h_QCD.SetLineColor(kYellow)
        h_signal.Draw('hist')
        h_VJets.Draw('hist same')
        h_QCD.Draw('hist same')
        legend.AddEntry(h_signal, 'signal', 'l')
        legend.AddEntry(h_VJets, 'V+Jets', 'l')
        legend.AddEntry(h_QCD, 'QCD', 'l')
        legend.Draw()
        
        cms_label, channel_label = get_cms_labels(channel)
        cms_label.Draw()
        channel_label.Draw()
        
        canvas.Modified()
        canvas.Update()
        for output_format in output_formats:
            canvas.SaveAs(plotname + '.' + output_format)
Пример #3
0
def make_plots(histograms, category, output_folder, histname):
    global variable, variables_latex, measurements_latex, k_value, b_tag_bin, maximum
    
    channel = 'electron'
    if 'electron' in histname:
        channel = 'electron'
    elif 'muon' in histname:
        channel = 'muon'
    else:
        channel = 'combined'

    canvas = Canvas(width=700, height=500)
    canvas.SetLeftMargin(0.15)
    canvas.SetBottomMargin(0.15)
    canvas.SetTopMargin(0.05)
    canvas.SetRightMargin(0.05)
    legend = plotting.create_legend(x0=0.6, y1=0.5)
    
    hist_data = histograms['unfolded']
    hist_data.GetXaxis().SetTitle(variables_latex[variable] + ' [GeV]')
    hist_data.GetYaxis().SetTitle('#frac{1}{#sigma} #frac{d#sigma}{d' + variables_latex[variable] + '} [GeV^{-1}]')
    hist_data.GetXaxis().SetTitleSize(0.05)
    hist_data.GetYaxis().SetTitleSize(0.05)
    hist_data.SetMinimum(0)
    hist_data.SetMaximum(maximum[variable])
    hist_data.SetMarkerSize(1)
    hist_data.SetMarkerStyle(8)
    plotAsym = TGraphAsymmErrors(hist_data)
    plotStatErr = TGraphAsymmErrors(hist_data)
    
    xsections = read_unfolded_xsections(channel)
    bins = variable_bins_ROOT[variable]
    assert(len(bins) == len(xsections['central']))
    
#    for bin_i in range(len(bins)):
#        scale = 1# / width
#        centralresult = xsections['central'][bin_i]
#        fit_error = centralresult[1]
#        uncertainty = calculateTotalUncertainty(xsections, bin_i)
#        uncertainty_total_plus = uncertainty['Total+'][0]
#        uncertainty_total_minus = uncertainty['Total-'][0]
#        uncertainty_total_plus, uncertainty_total_minus = symmetriseErrors(uncertainty_total_plus, uncertainty_total_minus)
#        error_up = sqrt(fit_error ** 2 + uncertainty_total_plus ** 2) * scale
#        error_down = sqrt(fit_error ** 2 + uncertainty_total_minus ** 2) * scale
#        plotStatErr.SetPointEYhigh(bin_i, fit_error * scale)
#        plotStatErr.SetPointEYlow(bin_i, fit_error * scale)
#        plotAsym.SetPointEYhigh(bin_i, error_up)
#        plotAsym.SetPointEYlow(bin_i, error_down)

    gStyle.SetEndErrorSize(20)
    plotAsym.SetLineWidth(2)
    plotStatErr.SetLineWidth(2)
    hist_data.Draw('P')
    plotStatErr.Draw('same P')
    plotAsym.Draw('same P Z')
    legend.AddEntry(hist_data, 'unfolded', 'P')
    
    hist_measured = histograms['measured']
    hist_measured.SetMarkerSize(1)
    hist_measured.SetMarkerStyle(20)
    hist_measured.SetMarkerColor(2)
    hist_measured.Draw('same P')
    legend.AddEntry(hist_measured, 'measured', 'P')
    
    for key, hist in histograms.iteritems():
        if not 'unfolded' in key and not 'measured' in key:
            hist.SetLineStyle(7)
            hist.SetLineWidth(2)
            #setting colours
            if 'POWHEG' in key or 'matchingdown' in key:
                hist.SetLineColor(kBlue)
            elif 'MADGRAPH' in key or 'matchingup' in key:
                hist.SetLineColor(kRed + 1)
            elif 'MCATNLO'  in key or 'scaleup' in key:
                hist.SetLineColor(kMagenta + 3)
            elif 'scaledown' in key:
                hist.SetLineColor(kGreen)
            hist.Draw('hist same')
            legend.AddEntry(hist, measurements_latex[key], 'l')
            
    
    legend.Draw()
             
    cms_label, channel_label = get_cms_labels(channel)
    cms_label.Draw()
    channel_label.Draw()
    
    canvas.Modified()
    canvas.Update()
    
    path = output_folder + str(measurement_config.centre_of_mass) + 'TeV/' + variable + '/' + category
    make_folder_if_not_exists(path)
    
    for output_format in output_formats:
        canvas.SaveAs(path + '/' + histname + '_kv' + str(k_value) + '.' + output_format)
Пример #4
0
def plot_fit_results(histograms, category, channel):
    global variable, translate_options, b_tag_bin, output_folder
    #ROOT.TH1.SetDefaultSumw2(False)
    
    for variable_bin in variable_bins_ROOT[variable]:
        path = output_folder + str(measurement_config.centre_of_mass) + 'TeV/' + variable + '/' + category + '/fit_results/'
        make_folder_if_not_exists(path)
        plotname = path + channel + '_bin_' + variable_bin
        # check if template plots exist already
        for output_format in output_formats:
            if os.path.isfile(plotname + '.' + output_format):
                continue
        canvas = Canvas(width=700, height=500)
        canvas.SetLeftMargin(0.15)
        canvas.SetBottomMargin(0.15)
        canvas.SetTopMargin(0.05)
        canvas.SetRightMargin(0.05)
        legend = plotting.create_legend(x0=0.7, y1=0.8)
        h_data = histograms[variable_bin]['data']
        h_signal = histograms[variable_bin]['signal']
        h_background = histograms[variable_bin]['background']
        
        h_data.GetXaxis().SetTitle('Lepton #eta')
        h_data.GetYaxis().SetTitle('Number of Events')
        h_data.GetXaxis().SetTitleSize(0.05)
        h_data.GetYaxis().SetTitleSize(0.05)
        h_data.SetMinimum(0)
        h_data.SetMarkerSize(1)
        h_data.SetMarkerStyle(20)
        gStyle.SetEndErrorSize(20)
        h_data.Draw('P')
        
        h_signal.SetFillColor(kRed + 1)
        h_background.SetFillColor(kGreen-3)
        h_signal.SetLineWidth(2)
        h_background.SetLineWidth(2)
        h_signal.SetFillStyle(1001)
        h_background.SetFillStyle(1001)
        
        mcStack = THStack("MC", "MC")
        mcStack.Add(h_background)
        mcStack.Add(h_signal)
        
        mcStack.Draw('hist same')
        h_data.Draw('error P same')
        legend.AddEntry(h_data, 'data', 'P')
        legend.AddEntry(h_signal, 'signal', 'F')
        legend.AddEntry(h_background, 'background', 'F')
        legend.Draw()
        
        mytext = TPaveText(0.5, 0.97, 1, 1.01, "NDC")
        channelLabel = TPaveText(0.18, 0.97, 0.5, 1.01, "NDC")
        if channel == 'electron':
            channelLabel.AddText("e, %s, %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        elif channel == 'muon':
            channelLabel.AddText("#mu, %s, %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        else:
            channelLabel.AddText("combined, %s, %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        mytext.AddText("CMS Preliminary, L = %.1f fb^{-1} at #sqrt{s} = 8 TeV" % (5.8));
             
        mytext.SetFillStyle(0)
        mytext.SetBorderSize(0)
        mytext.SetTextFont(42)
        mytext.SetTextAlign(13)
        
        channelLabel.SetFillStyle(0)
        channelLabel.SetBorderSize(0)
        channelLabel.SetTextFont(42)
        channelLabel.SetTextAlign(13)
        mytext.Draw()
        channelLabel.Draw()
        
        canvas.Modified()
        canvas.Update()
        for output_format in output_formats:
            canvas.SaveAs(plotname + '.' + output_format)
def make_plots_ROOT(histograms, category, save_path, histname, channel):
    global variable, translateOptions, k_value, b_tag_bin, maximum
    ROOT.TH1.SetDefaultSumw2(False)
    ROOT.gROOT.SetBatch(True)
    ROOT.gROOT.ProcessLine('gErrorIgnoreLevel = 1001;')
    plotting.setStyle()
    gStyle.SetTitleYOffset(2.)
    ROOT.gROOT.ForceStyle()
    canvas = Canvas(width=700, height=500)
    canvas.SetLeftMargin(0.18)
    canvas.SetBottomMargin(0.15)
    canvas.SetTopMargin(0.05)
    canvas.SetRightMargin(0.05)
    legend = plotting.create_legend(x0=0.6, y1=0.5)

    hist_data = histograms['unfolded']
    hist_data.GetXaxis().SetTitle(translate_options[variable] + ' [GeV]')
    hist_data.GetYaxis().SetTitle('#frac{1}{#sigma} #frac{d#sigma}{d' +
                                  translate_options[variable] + '} [GeV^{-1}]')
    hist_data.GetXaxis().SetTitleSize(0.05)
    hist_data.GetYaxis().SetTitleSize(0.05)
    hist_data.SetMinimum(0)
    hist_data.SetMaximum(maximum[variable])
    hist_data.SetMarkerSize(1)
    hist_data.SetMarkerStyle(8)
    plotAsym = TGraphAsymmErrors(hist_data)
    plotStatErr = TGraphAsymmErrors(hist_data)

    xsections = read_unfolded_xsections(channel)
    bins = variable_bins_ROOT[variable]
    assert (len(bins) == len(xsections['central']))

    for bin_i in range(len(bins)):
        scale = 1  # / width
        centralresult = xsections['central'][bin_i]
        fit_error = centralresult[1]
        uncertainty = calculateTotalUncertainty(xsections, bin_i)
        uncertainty_total_plus = uncertainty['Total+'][0]
        uncertainty_total_minus = uncertainty['Total-'][0]
        uncertainty_total_plus, uncertainty_total_minus = symmetriseErrors(
            uncertainty_total_plus, uncertainty_total_minus)
        error_up = sqrt(fit_error**2 + uncertainty_total_plus**2) * scale
        error_down = sqrt(fit_error**2 + uncertainty_total_minus**2) * scale
        plotStatErr.SetPointEYhigh(bin_i, fit_error * scale)
        plotStatErr.SetPointEYlow(bin_i, fit_error * scale)
        plotAsym.SetPointEYhigh(bin_i, error_up)
        plotAsym.SetPointEYlow(bin_i, error_down)

    gStyle.SetEndErrorSize(20)
    plotAsym.SetLineWidth(2)
    plotStatErr.SetLineWidth(2)
    hist_data.Draw('P')
    plotStatErr.Draw('same P')
    plotAsym.Draw('same P Z')
    legend.AddEntry(hist_data, 'unfolded', 'P')

    hist_measured = histograms['measured']
    hist_measured.SetMarkerSize(1)
    hist_measured.SetMarkerStyle(20)
    hist_measured.SetMarkerColor(2)
    #hist_measured.Draw('same P')
    #legend.AddEntry(hist_measured, 'measured', 'P')

    for key, hist in sorted(histograms.iteritems()):
        if not 'unfolded' in key and not 'measured' in key:
            hist.SetLineStyle(7)
            hist.SetLineWidth(2)
            # setting colours
            if 'POWHEG' in key or 'matchingdown' in key:
                hist.SetLineColor(kBlue)
            elif 'MADGRAPH' in key or 'matchingup' in key:
                hist.SetLineColor(kRed + 1)
            elif 'MCATNLO' in key or 'scaleup' in key:
                hist.SetLineColor(kGreen - 3)
            elif 'scaledown' in key:
                hist.SetLineColor(kMagenta + 3)
            hist.Draw('hist same')
            legend.AddEntry(hist, translate_options[key], 'l')

    legend.Draw()

    mytext = TPaveText(0.5, 0.97, 1, 1.01, "NDC")
    channelLabel = TPaveText(0.18, 0.97, 0.5, 1.01, "NDC")
    if 'electron' in histname:
        channelLabel.AddText(
            "e, %s, %s, k = %s" %
            ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    elif 'muon' in histname:
        channelLabel.AddText(
            "#mu, %s, %s, k = %s" %
            ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    else:
        channelLabel.AddText(
            "combined, %s, %s, k = %s" %
            ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    mytext.AddText("CMS Preliminary, L = %.1f fb^{-1} at #sqrt{s} = 8 TeV" %
                   (5.8))

    mytext.SetFillStyle(0)
    mytext.SetBorderSize(0)
    mytext.SetTextFont(42)
    mytext.SetTextAlign(13)

    channelLabel.SetFillStyle(0)
    channelLabel.SetBorderSize(0)
    channelLabel.SetTextFont(42)
    channelLabel.SetTextAlign(13)
    mytext.Draw()
    channelLabel.Draw()

    canvas.Modified()
    canvas.Update()

    path = save_path + '/' + variable + '/' + category
    make_folder_if_not_exists(path)
    canvas.SaveAs(path + '/' + histname + '_kv' + str(k_value) + '.png')
    canvas.SaveAs(path + '/' + histname + '_kv' + str(k_value) + '.pdf')
def plot_central_and_systematics(channel):
    global variable, translate_options, k_value, b_tag_bin, maximum, categories
    ROOT.TH1.SetDefaultSumw2(False)
    ROOT.gROOT.SetBatch(True)
    ROOT.gROOT.ProcessLine('gErrorIgnoreLevel = 1001;')
    plotting.setStyle()
    gStyle.SetTitleYOffset(1.4)
    ROOT.gROOT.ForceStyle()
    canvas = Canvas(width=700, height=500)
    canvas.SetLeftMargin(0.15)
    canvas.SetBottomMargin(0.15)
    canvas.SetTopMargin(0.05)
    canvas.SetRightMargin(0.05)
    legend = plotting.create_legend(x0=0.6, y1=0.5)

    hist_data_central = read_xsection_measurement_results(
        'central', channel)[0]['unfolded']

    hist_data_central.GetXaxis().SetTitle(translate_options[variable] +
                                          ' [GeV]')
    hist_data_central.GetYaxis().SetTitle('#frac{1}{#sigma} #frac{d#sigma}{d' +
                                          translate_options[variable] +
                                          '} [GeV^{-1}]')
    hist_data_central.GetXaxis().SetTitleSize(0.05)
    hist_data_central.GetYaxis().SetTitleSize(0.05)
    hist_data_central.SetMinimum(0)
    hist_data_central.SetMaximum(maximum[variable])
    hist_data_central.SetMarkerSize(1)
    hist_data_central.SetMarkerStyle(20)
    #    plotAsym = TGraphAsymmErrors(hist_data)
    #    plotStatErr = TGraphAsymmErrors(hist_data)
    gStyle.SetEndErrorSize(20)
    hist_data_central.Draw('P')
    #    plotStatErr.Draw('same P')
    #    plotAsym.Draw('same P Z')
    legend.AddEntry(hist_data_central, 'measured (unfolded)', 'P')

    for systematic in categories:
        if systematic != 'central':
            hist_data_systematic = read_xsection_measurement_results(
                systematic, channel)[0]['unfolded']
            hist_data_systematic.SetMarkerSize(0.5)
            hist_data_systematic.SetMarkerStyle(20)
            colour_number = categories.index(systematic) + 1
            if colour_number == 10:
                colour_number = 42
            hist_data_systematic.SetMarkerColor(colour_number)
            hist_data_systematic.Draw('same P')
            legend.AddEntry(hist_data_systematic, systematic, 'P')


#    for central_generator in ['MADGRAPH', 'POWHEG', 'MCATNLO']:
#        hist_MC = read_xsection_measurement_results('central', channel)[0][central_generator]
#        hist_MC.SetLineStyle(7)
#        hist_MC.SetLineWidth(2)
#        #setting colours
#        if central_generator == 'POWHEG':
#            hist_MC.SetLineColor(kBlue)
#        elif central_generator == 'MADGRAPH':
#            hist_MC.SetLineColor(kRed + 1)
#        elif central_generator == 'MCATNLO':
#            hist_MC.SetLineColor(kMagenta + 3)
#        hist_MC.Draw('hist same')
#legend.AddEntry(hist_MC, translate_options[central_generator], 'l')

    legend.Draw()

    mytext = TPaveText(0.5, 0.97, 1, 1.01, "NDC")
    channelLabel = TPaveText(0.18, 0.97, 0.5, 1.01, "NDC")
    if channel == 'electron':
        channelLabel.AddText(
            "e, %s, %s, k_v = %s" %
            ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    elif channel == 'muon':
        channelLabel.AddText(
            "#mu, %s, %s, k_v = %s" %
            ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    else:
        channelLabel.AddText(
            "combined, %s, %s, k_v = %s" %
            ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    mytext.AddText("CMS Preliminary, L = %.1f fb^{-1} at #sqrt{s} = 8 TeV" %
                   (5.8))

    mytext.SetFillStyle(0)
    mytext.SetBorderSize(0)
    mytext.SetTextFont(42)
    mytext.SetTextAlign(13)

    channelLabel.SetFillStyle(0)
    channelLabel.SetBorderSize(0)
    channelLabel.SetTextFont(42)
    channelLabel.SetTextAlign(13)
    mytext.Draw()
    if not channel == 'combination':
        channelLabel.Draw()

    canvas.Modified()
    canvas.Update()

    path = save_path + '/' + variable
    make_folder_if_not_exists(path)
    canvas.SaveAs(path + '/normalised_xsection_' + channel + '_altogether_kv' +
                  str(k_value) + '.png')
    canvas.SaveAs(path + '/normalised_xsection_' + channel + '_altogether_kv' +
                  str(k_value) + '.pdf')
def make_template_plots(histograms, category, channel):
    global variable, translate_options, b_tag_bin, save_path
    ROOT.TH1.SetDefaultSumw2(False)
    ROOT.gROOT.SetBatch(True)
    ROOT.gROOT.ProcessLine('gErrorIgnoreLevel = 1001;')
    plotting.setStyle()
    gStyle.SetTitleYOffset(1.4)
    ROOT.gROOT.ForceStyle()

    for variable_bin in variable_bins_ROOT[variable]:
        path = save_path + '/' + variable + '/' + category + '/fit_templates/'
        make_folder_if_not_exists(path)
        plotname = path + channel + '_templates_bin_' + variable_bin + '.png'
        # check if template plots exist already
        if os.path.isfile(plotname):
            continue
        canvas = Canvas(width=700, height=500)
        canvas.SetLeftMargin(0.15)
        canvas.SetBottomMargin(0.15)
        canvas.SetTopMargin(0.05)
        canvas.SetRightMargin(0.05)
        legend = plotting.create_legend(x0=0.7, y1=0.8)
        h_signal = histograms[variable_bin]['signal']
        h_VJets = histograms[variable_bin]['V+Jets']
        h_QCD = histograms[variable_bin]['QCD']

        h_signal.GetXaxis().SetTitle('Lepton #eta')
        h_signal.GetYaxis().SetTitle('Normalised Events')
        h_signal.GetXaxis().SetTitleSize(0.05)
        h_signal.GetYaxis().SetTitleSize(0.05)
        h_signal.SetMinimum(0)
        h_signal.SetMaximum(0.2)
        h_signal.SetLineWidth(2)
        h_VJets.SetLineWidth(2)
        h_QCD.SetLineWidth(2)
        h_signal.SetLineColor(kRed + 1)
        h_VJets.SetLineColor(kBlue)
        h_QCD.SetLineColor(kYellow)
        h_signal.Draw('hist')
        h_VJets.Draw('hist same')
        h_QCD.Draw('hist same')
        legend.AddEntry(h_signal, 'signal', 'l')
        legend.AddEntry(h_VJets, 'V+Jets', 'l')
        legend.AddEntry(h_QCD, 'QCD', 'l')
        legend.Draw()

        mytext = TPaveText(0.5, 0.97, 1, 1.01, "NDC")
        channelLabel = TPaveText(0.18, 0.97, 0.5, 1.01, "NDC")
        if channel == 'electron':
            channelLabel.AddText("e, %s, %s" %
                                 ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        elif channel == 'muon':
            channelLabel.AddText("#mu, %s, %s" %
                                 ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        else:
            channelLabel.AddText("combined, %s, %s" %
                                 ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        mytext.AddText(
            "CMS Preliminary, L = %.1f fb^{-1} at #sqrt{s} = 8 TeV" % (5.8))

        mytext.SetFillStyle(0)
        mytext.SetBorderSize(0)
        mytext.SetTextFont(42)
        mytext.SetTextAlign(13)

        channelLabel.SetFillStyle(0)
        channelLabel.SetBorderSize(0)
        channelLabel.SetTextFont(42)
        channelLabel.SetTextAlign(13)
        mytext.Draw()
        channelLabel.Draw()

        canvas.Modified()
        canvas.Update()
        canvas.SaveAs(plotname)
        canvas.SaveAs(plotname.replace('png', 'pdf'))
def plot_fit_results(histograms, category, channel):
    global variable, translate_options, b_tag_bin, save_path
    #ROOT.TH1.SetDefaultSumw2(False)
    ROOT.gROOT.SetBatch(True)
    ROOT.gROOT.ProcessLine('gErrorIgnoreLevel = 1001;')
    plotting.setStyle()
    gStyle.SetTitleYOffset(1.4)
    ROOT.gROOT.ForceStyle()

    for variable_bin in variable_bins_ROOT[variable]:
        path = save_path + '/' + variable + '/' + category + '/fit_results/'
        make_folder_if_not_exists(path)
        plotname = path + channel + '_bin_' + variable_bin + '.png'
        # check if template plots exist already
        if os.path.isfile(plotname):
            continue
        canvas = Canvas(width=700, height=500)
        canvas.SetLeftMargin(0.15)
        canvas.SetBottomMargin(0.15)
        canvas.SetTopMargin(0.05)
        canvas.SetRightMargin(0.05)
        legend = plotting.create_legend(x0=0.7, y1=0.8)
        h_data = histograms[variable_bin]['data']
        h_signal = histograms[variable_bin]['signal']
        h_background = histograms[variable_bin]['background']

        h_data.GetXaxis().SetTitle('Lepton #eta')
        h_data.GetYaxis().SetTitle('Number of Events')
        h_data.GetXaxis().SetTitleSize(0.05)
        h_data.GetYaxis().SetTitleSize(0.05)
        h_data.SetMinimum(0)
        h_data.SetMarkerSize(1)
        h_data.SetMarkerStyle(20)
        gStyle.SetEndErrorSize(20)
        h_data.Draw('P')

        h_signal.SetFillColor(kRed + 1)
        h_background.SetFillColor(kGreen - 3)
        h_signal.SetLineWidth(2)
        h_background.SetLineWidth(2)
        h_signal.SetFillStyle(1001)
        h_background.SetFillStyle(1001)

        mcStack = THStack("MC", "MC")
        mcStack.Add(h_background)
        mcStack.Add(h_signal)

        mcStack.Draw('hist same')
        h_data.Draw('error P same')
        legend.AddEntry(h_data, 'data', 'P')
        legend.AddEntry(h_signal, 'signal', 'F')
        legend.AddEntry(h_background, 'background', 'F')
        legend.Draw()

        mytext = TPaveText(0.5, 0.97, 1, 1.01, "NDC")
        channelLabel = TPaveText(0.18, 0.97, 0.5, 1.01, "NDC")
        if channel == 'electron':
            channelLabel.AddText("e, %s, %s" %
                                 ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        elif channel == 'muon':
            channelLabel.AddText("#mu, %s, %s" %
                                 ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        else:
            channelLabel.AddText("combined, %s, %s" %
                                 ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        mytext.AddText(
            "CMS Preliminary, L = %.1f fb^{-1} at #sqrt{s} = 8 TeV" % (5.8))

        mytext.SetFillStyle(0)
        mytext.SetBorderSize(0)
        mytext.SetTextFont(42)
        mytext.SetTextAlign(13)

        channelLabel.SetFillStyle(0)
        channelLabel.SetBorderSize(0)
        channelLabel.SetTextFont(42)
        channelLabel.SetTextAlign(13)
        mytext.Draw()
        channelLabel.Draw()

        canvas.Modified()
        canvas.Update()
        canvas.SaveAs(plotname)
        canvas.SaveAs(plotname.replace('png', 'pdf'))
def make_plots(histograms, category, output_folder, histname, show_before_unfolding = False):
    global variable, variables_latex, measurements_latex, k_value, b_tag_bin, maximum
    
    channel = 'electron'
    if 'electron' in histname:
        channel = 'electron'
    elif 'muon' in histname:
        channel = 'muon'
    else:
        channel = 'combined'

    canvas = Canvas(width=700, height=500)
    canvas.SetLeftMargin(0.15)
    canvas.SetBottomMargin(0.15)
    canvas.SetTopMargin(0.05)
    canvas.SetRightMargin(0.05)
    legend = plotting.create_legend(x0=0.6, y1=0.5)
    
    
    hist_data = histograms['unfolded']
    hist_data.GetXaxis().SetTitle(variables_latex[variable] + ' [GeV]')
    hist_data.GetYaxis().SetTitle('#frac{1}{#sigma} #frac{d#sigma}{d' + variables_latex[variable] + '} [GeV^{-1}]')
    hist_data.GetXaxis().SetTitleSize(0.05)
    hist_data.GetYaxis().SetTitleSize(0.05)
    hist_data.SetMinimum(0)
    hist_data.SetMaximum(maximum[variable])
    hist_data.SetMarkerSize(1)
    hist_data.SetMarkerStyle(8)
    
    hist_data_with_systematics = histograms['unfolded_with_systematics']
    hist_data_with_systematics.GetXaxis().SetTitle(variables_latex[variable] + ' [GeV]')
    hist_data_with_systematics.GetYaxis().SetTitle('#frac{1}{#sigma} #frac{d#sigma}{d' + variables_latex[variable] + '} [GeV^{-1}]')
    hist_data_with_systematics.GetXaxis().SetTitleSize(0.05)
    hist_data_with_systematics.GetYaxis().SetTitleSize(0.05)
    hist_data_with_systematics.SetMinimum(0)
    hist_data_with_systematics.SetMaximum(maximum[variable])
    hist_data_with_systematics.SetMarkerSize(1)
    hist_data_with_systematics.SetMarkerStyle(8)
    
    plotAsym = TGraphAsymmErrors(hist_data_with_systematics)
    plotStatErr = TGraphAsymmErrors(hist_data)
    
    xsections = read_unfolded_xsections(channel)
    bins = variable_bins_ROOT[variable]
    assert(len(bins) == len(xsections['central']))
    
    gStyle.SetEndErrorSize(20)
    plotAsym.SetLineWidth(2)
    plotStatErr.SetLineWidth(2)
    hist_data.Draw('P')
    plotStatErr.Draw('same P')
    plotAsym.Draw('same P Z')
    legend.AddEntry(hist_data, 'data', 'P')
    
    if show_before_unfolding:
        hist_measured = histograms['measured']
        hist_measured.SetMarkerSize(1)
        hist_measured.SetMarkerStyle(20)
        hist_measured.SetMarkerColor(2)
        hist_measured.Draw('same P')
        legend.AddEntry(hist_measured, 'data (before unfolding)', 'P')
    
    for key, hist in histograms.iteritems():
        if not 'unfolded' in key and not 'measured' in key:
            hist.SetLineStyle(7)
            hist.SetLineWidth(2)
            #setting colours
            if 'POWHEG' in key or 'matchingdown' in key:
                hist.SetLineColor(kBlue)
            elif 'MADGRAPH' in key or 'matchingup' in key:
                hist.SetLineColor(kRed + 1)
            elif 'MCATNLO'  in key or 'scaleup' in key:
                hist.SetLineColor(kMagenta + 3)
            elif 'scaledown' in key:
                hist.SetLineColor(kGreen)
            hist.Draw('hist same')
            legend.AddEntry(hist, measurements_latex[key], 'l')
            
    
    legend.Draw()
             
    cms_label, channel_label = get_cms_labels(channel)
    cms_label.Draw()
    channel_label.Draw()
    
    canvas.Modified()
    canvas.Update()
    
    path = output_folder + str(measurement_config.centre_of_mass) + 'TeV/' + variable + '/' + category
    make_folder_if_not_exists(path)
    
    for output_format in output_formats:
        canvas.SaveAs(path + '/' + histname + '_kv' + str(k_value) + '.' + output_format)
def plot_central_and_systematics(channel):
    global variable, translate_options, k_value, b_tag_bin, maximum, categories
    ROOT.TH1.SetDefaultSumw2(False)
    ROOT.gROOT.SetBatch(True)
    ROOT.gROOT.ProcessLine("gErrorIgnoreLevel = 1001;")
    plotting.setStyle()
    gStyle.SetTitleYOffset(1.4)
    ROOT.gROOT.ForceStyle()
    canvas = Canvas(width=700, height=500)
    canvas.SetLeftMargin(0.15)
    canvas.SetBottomMargin(0.15)
    canvas.SetTopMargin(0.05)
    canvas.SetRightMargin(0.05)
    legend = plotting.create_legend(x0=0.6, y1=0.5)

    hist_data_central = read_xsection_measurement_results("central", channel)[0]["unfolded"]

    hist_data_central.GetXaxis().SetTitle(translate_options[variable] + " [GeV]")
    hist_data_central.GetYaxis().SetTitle(
        "#frac{1}{#sigma} #frac{d#sigma}{d" + translate_options[variable] + "} [GeV^{-1}]"
    )
    hist_data_central.GetXaxis().SetTitleSize(0.05)
    hist_data_central.GetYaxis().SetTitleSize(0.05)
    hist_data_central.SetMinimum(0)
    hist_data_central.SetMaximum(maximum[variable])
    hist_data_central.SetMarkerSize(1)
    hist_data_central.SetMarkerStyle(20)
    #    plotAsym = TGraphAsymmErrors(hist_data)
    #    plotStatErr = TGraphAsymmErrors(hist_data)
    gStyle.SetEndErrorSize(20)
    hist_data_central.Draw("P")
    #    plotStatErr.Draw('same P')
    #    plotAsym.Draw('same P Z')
    legend.AddEntry(hist_data_central, "measured (unfolded)", "P")

    for systematic in categories:
        if systematic != "central":
            hist_data_systematic = read_xsection_measurement_results(systematic, channel)[0]["unfolded"]
            hist_data_systematic.SetMarkerSize(0.5)
            hist_data_systematic.SetMarkerStyle(20)
            colour_number = categories.index(systematic) + 1
            if colour_number == 10:
                colour_number = 42
            hist_data_systematic.SetMarkerColor(colour_number)
            hist_data_systematic.Draw("same P")
            legend.AddEntry(hist_data_systematic, systematic, "P")

    #    for central_generator in ['MADGRAPH', 'POWHEG', 'MCATNLO']:
    #        hist_MC = read_xsection_measurement_results('central', channel)[0][central_generator]
    #        hist_MC.SetLineStyle(7)
    #        hist_MC.SetLineWidth(2)
    #        #setting colours
    #        if central_generator == 'POWHEG':
    #            hist_MC.SetLineColor(kBlue)
    #        elif central_generator == 'MADGRAPH':
    #            hist_MC.SetLineColor(kRed + 1)
    #        elif central_generator == 'MCATNLO':
    #            hist_MC.SetLineColor(kMagenta + 3)
    #        hist_MC.Draw('hist same')
    # legend.AddEntry(hist_MC, translate_options[central_generator], 'l')

    legend.Draw()

    mytext = TPaveText(0.5, 0.97, 1, 1.01, "NDC")
    channelLabel = TPaveText(0.18, 0.97, 0.5, 1.01, "NDC")
    if channel == "electron":
        channelLabel.AddText("e, %s, %s, k_v = %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    elif channel == "muon":
        channelLabel.AddText("#mu, %s, %s, k_v = %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    else:
        channelLabel.AddText("combined, %s, %s, k_v = %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    mytext.AddText("CMS Preliminary, L = %.1f fb^{-1} at #sqrt{s} = 8 TeV" % (5.8))

    mytext.SetFillStyle(0)
    mytext.SetBorderSize(0)
    mytext.SetTextFont(42)
    mytext.SetTextAlign(13)

    channelLabel.SetFillStyle(0)
    channelLabel.SetBorderSize(0)
    channelLabel.SetTextFont(42)
    channelLabel.SetTextAlign(13)
    mytext.Draw()
    if not channel == "combination":
        channelLabel.Draw()

    canvas.Modified()
    canvas.Update()

    path = save_path + "/" + variable
    make_folder_if_not_exists(path)
    canvas.SaveAs(path + "/normalised_xsection_" + channel + "_altogether_kv" + str(k_value) + ".png")
    canvas.SaveAs(path + "/normalised_xsection_" + channel + "_altogether_kv" + str(k_value) + ".pdf")
def make_plots_ROOT(histograms, category, save_path, histname, channel):
    global variable, translateOptions, k_value, b_tag_bin, maximum
    ROOT.TH1.SetDefaultSumw2(False)
    ROOT.gROOT.SetBatch(True)
    ROOT.gROOT.ProcessLine("gErrorIgnoreLevel = 1001;")
    plotting.setStyle()
    gStyle.SetTitleYOffset(2.0)
    ROOT.gROOT.ForceStyle()
    canvas = Canvas(width=700, height=500)
    canvas.SetLeftMargin(0.18)
    canvas.SetBottomMargin(0.15)
    canvas.SetTopMargin(0.05)
    canvas.SetRightMargin(0.05)
    legend = plotting.create_legend(x0=0.6, y1=0.5)

    hist_data = histograms["unfolded"]
    hist_data.GetXaxis().SetTitle(translate_options[variable] + " [GeV]")
    hist_data.GetYaxis().SetTitle("#frac{1}{#sigma} #frac{d#sigma}{d" + translate_options[variable] + "} [GeV^{-1}]")
    hist_data.GetXaxis().SetTitleSize(0.05)
    hist_data.GetYaxis().SetTitleSize(0.05)
    hist_data.SetMinimum(0)
    hist_data.SetMaximum(maximum[variable])
    hist_data.SetMarkerSize(1)
    hist_data.SetMarkerStyle(8)
    plotAsym = TGraphAsymmErrors(hist_data)
    plotStatErr = TGraphAsymmErrors(hist_data)

    xsections = read_unfolded_xsections(channel)
    bins = variable_bins_ROOT[variable]
    assert len(bins) == len(xsections["central"])

    for bin_i in range(len(bins)):
        scale = 1  # / width
        centralresult = xsections["central"][bin_i]
        fit_error = centralresult[1]
        uncertainty = calculateTotalUncertainty(xsections, bin_i)
        uncertainty_total_plus = uncertainty["Total+"][0]
        uncertainty_total_minus = uncertainty["Total-"][0]
        uncertainty_total_plus, uncertainty_total_minus = symmetriseErrors(
            uncertainty_total_plus, uncertainty_total_minus
        )
        error_up = sqrt(fit_error ** 2 + uncertainty_total_plus ** 2) * scale
        error_down = sqrt(fit_error ** 2 + uncertainty_total_minus ** 2) * scale
        plotStatErr.SetPointEYhigh(bin_i, fit_error * scale)
        plotStatErr.SetPointEYlow(bin_i, fit_error * scale)
        plotAsym.SetPointEYhigh(bin_i, error_up)
        plotAsym.SetPointEYlow(bin_i, error_down)

    gStyle.SetEndErrorSize(20)
    plotAsym.SetLineWidth(2)
    plotStatErr.SetLineWidth(2)
    hist_data.Draw("P")
    plotStatErr.Draw("same P")
    plotAsym.Draw("same P Z")
    legend.AddEntry(hist_data, "unfolded", "P")

    hist_measured = histograms["measured"]
    hist_measured.SetMarkerSize(1)
    hist_measured.SetMarkerStyle(20)
    hist_measured.SetMarkerColor(2)
    # hist_measured.Draw('same P')
    # legend.AddEntry(hist_measured, 'measured', 'P')

    for key, hist in sorted(histograms.iteritems()):
        if not "unfolded" in key and not "measured" in key:
            hist.SetLineStyle(7)
            hist.SetLineWidth(2)
            # setting colours
            if "POWHEG" in key or "matchingdown" in key:
                hist.SetLineColor(kBlue)
            elif "MADGRAPH" in key or "matchingup" in key:
                hist.SetLineColor(kRed + 1)
            elif "MCATNLO" in key or "scaleup" in key:
                hist.SetLineColor(kGreen - 3)
            elif "scaledown" in key:
                hist.SetLineColor(kMagenta + 3)
            hist.Draw("hist same")
            legend.AddEntry(hist, translate_options[key], "l")

    legend.Draw()

    mytext = TPaveText(0.5, 0.97, 1, 1.01, "NDC")
    channelLabel = TPaveText(0.18, 0.97, 0.5, 1.01, "NDC")
    if "electron" in histname:
        channelLabel.AddText("e, %s, %s, k = %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    elif "muon" in histname:
        channelLabel.AddText("#mu, %s, %s, k = %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    else:
        channelLabel.AddText("combined, %s, %s, k = %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin], k_value))
    mytext.AddText("CMS Preliminary, L = %.1f fb^{-1} at #sqrt{s} = 8 TeV" % (5.8))

    mytext.SetFillStyle(0)
    mytext.SetBorderSize(0)
    mytext.SetTextFont(42)
    mytext.SetTextAlign(13)

    channelLabel.SetFillStyle(0)
    channelLabel.SetBorderSize(0)
    channelLabel.SetTextFont(42)
    channelLabel.SetTextAlign(13)
    mytext.Draw()
    channelLabel.Draw()

    canvas.Modified()
    canvas.Update()

    path = save_path + "/" + variable + "/" + category
    make_folder_if_not_exists(path)
    canvas.SaveAs(path + "/" + histname + "_kv" + str(k_value) + ".png")
    canvas.SaveAs(path + "/" + histname + "_kv" + str(k_value) + ".pdf")
def plot_fit_results(histograms, category, channel):
    global variable, translate_options, b_tag_bin, save_path
    # ROOT.TH1.SetDefaultSumw2(False)
    ROOT.gROOT.SetBatch(True)
    ROOT.gROOT.ProcessLine("gErrorIgnoreLevel = 1001;")
    plotting.setStyle()
    gStyle.SetTitleYOffset(1.4)
    ROOT.gROOT.ForceStyle()

    for variable_bin in variable_bins_ROOT[variable]:
        path = save_path + "/" + variable + "/" + category + "/fit_results/"
        make_folder_if_not_exists(path)
        plotname = path + channel + "_bin_" + variable_bin + ".png"
        # check if template plots exist already
        if os.path.isfile(plotname):
            continue
        canvas = Canvas(width=700, height=500)
        canvas.SetLeftMargin(0.15)
        canvas.SetBottomMargin(0.15)
        canvas.SetTopMargin(0.05)
        canvas.SetRightMargin(0.05)
        legend = plotting.create_legend(x0=0.7, y1=0.8)
        h_data = histograms[variable_bin]["data"]
        h_signal = histograms[variable_bin]["signal"]
        h_background = histograms[variable_bin]["background"]

        h_data.GetXaxis().SetTitle("Lepton #eta")
        h_data.GetYaxis().SetTitle("Number of Events")
        h_data.GetXaxis().SetTitleSize(0.05)
        h_data.GetYaxis().SetTitleSize(0.05)
        h_data.SetMinimum(0)
        h_data.SetMarkerSize(1)
        h_data.SetMarkerStyle(20)
        gStyle.SetEndErrorSize(20)
        h_data.Draw("P")

        h_signal.SetFillColor(kRed + 1)
        h_background.SetFillColor(kGreen - 3)
        h_signal.SetLineWidth(2)
        h_background.SetLineWidth(2)
        h_signal.SetFillStyle(1001)
        h_background.SetFillStyle(1001)

        mcStack = THStack("MC", "MC")
        mcStack.Add(h_background)
        mcStack.Add(h_signal)

        mcStack.Draw("hist same")
        h_data.Draw("error P same")
        legend.AddEntry(h_data, "data", "P")
        legend.AddEntry(h_signal, "signal", "F")
        legend.AddEntry(h_background, "background", "F")
        legend.Draw()

        mytext = TPaveText(0.5, 0.97, 1, 1.01, "NDC")
        channelLabel = TPaveText(0.18, 0.97, 0.5, 1.01, "NDC")
        if channel == "electron":
            channelLabel.AddText("e, %s, %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        elif channel == "muon":
            channelLabel.AddText("#mu, %s, %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        else:
            channelLabel.AddText("combined, %s, %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        mytext.AddText("CMS Preliminary, L = %.1f fb^{-1} at #sqrt{s} = 8 TeV" % (5.8))

        mytext.SetFillStyle(0)
        mytext.SetBorderSize(0)
        mytext.SetTextFont(42)
        mytext.SetTextAlign(13)

        channelLabel.SetFillStyle(0)
        channelLabel.SetBorderSize(0)
        channelLabel.SetTextFont(42)
        channelLabel.SetTextAlign(13)
        mytext.Draw()
        channelLabel.Draw()

        canvas.Modified()
        canvas.Update()
        canvas.SaveAs(plotname)
        canvas.SaveAs(plotname.replace("png", "pdf"))
def make_template_plots(histograms, category, channel):
    global variable, translate_options, b_tag_bin, save_path
    ROOT.TH1.SetDefaultSumw2(False)
    ROOT.gROOT.SetBatch(True)
    ROOT.gROOT.ProcessLine("gErrorIgnoreLevel = 1001;")
    plotting.setStyle()
    gStyle.SetTitleYOffset(1.4)
    ROOT.gROOT.ForceStyle()

    for variable_bin in variable_bins_ROOT[variable]:
        path = save_path + "/" + variable + "/" + category + "/fit_templates/"
        make_folder_if_not_exists(path)
        plotname = path + channel + "_templates_bin_" + variable_bin + ".png"
        # check if template plots exist already
        if os.path.isfile(plotname):
            continue
        canvas = Canvas(width=700, height=500)
        canvas.SetLeftMargin(0.15)
        canvas.SetBottomMargin(0.15)
        canvas.SetTopMargin(0.05)
        canvas.SetRightMargin(0.05)
        legend = plotting.create_legend(x0=0.7, y1=0.8)
        h_signal = histograms[variable_bin]["signal"]
        h_VJets = histograms[variable_bin]["V+Jets"]
        h_QCD = histograms[variable_bin]["QCD"]

        h_signal.GetXaxis().SetTitle("Lepton #eta")
        h_signal.GetYaxis().SetTitle("Normalised Events")
        h_signal.GetXaxis().SetTitleSize(0.05)
        h_signal.GetYaxis().SetTitleSize(0.05)
        h_signal.SetMinimum(0)
        h_signal.SetMaximum(0.2)
        h_signal.SetLineWidth(2)
        h_VJets.SetLineWidth(2)
        h_QCD.SetLineWidth(2)
        h_signal.SetLineColor(kRed + 1)
        h_VJets.SetLineColor(kBlue)
        h_QCD.SetLineColor(kYellow)
        h_signal.Draw("hist")
        h_VJets.Draw("hist same")
        h_QCD.Draw("hist same")
        legend.AddEntry(h_signal, "signal", "l")
        legend.AddEntry(h_VJets, "V+Jets", "l")
        legend.AddEntry(h_QCD, "QCD", "l")
        legend.Draw()

        mytext = TPaveText(0.5, 0.97, 1, 1.01, "NDC")
        channelLabel = TPaveText(0.18, 0.97, 0.5, 1.01, "NDC")
        if channel == "electron":
            channelLabel.AddText("e, %s, %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        elif channel == "muon":
            channelLabel.AddText("#mu, %s, %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        else:
            channelLabel.AddText("combined, %s, %s" % ("#geq 4 jets", b_tag_bins_latex[b_tag_bin]))
        mytext.AddText("CMS Preliminary, L = %.1f fb^{-1} at #sqrt{s} = 8 TeV" % (5.8))

        mytext.SetFillStyle(0)
        mytext.SetBorderSize(0)
        mytext.SetTextFont(42)
        mytext.SetTextAlign(13)

        channelLabel.SetFillStyle(0)
        channelLabel.SetBorderSize(0)
        channelLabel.SetTextFont(42)
        channelLabel.SetTextAlign(13)
        mytext.Draw()
        channelLabel.Draw()

        canvas.Modified()
        canvas.Update()
        canvas.SaveAs(plotname)
        canvas.SaveAs(plotname.replace("png", "pdf"))