Пример #1
0
def swap(solution):
    calls = get_calls_including_zeroes(solution)
    vehicle = random.randrange(1, x.vehicles)
    route = calls[vehicle]
    it = 0
    while not route or len(route) <= 3:
        vehicle = random.randrange(1, x.vehicles)
        route = calls[vehicle]
        if it == 25:
            return solution
        else:
            it += 1
    new_route = route
    new_calls = calls
    new_calls[vehicle] = new_route
    it = 0
    while f(calls_to_solution(new_calls)) > f(solution) and not check_solution(
            calls_to_solution(new_calls)):
        rand1 = random.randrange(0, len(new_route))
        rand2 = random.randrange(0, len(new_route))
        if rand1 == 0 or rand2 == 0 or (rand1 == rand2):
            continue
        new_route[rand1], new_route[rand2] = new_route[rand2], new_route[rand1]
        new_calls[vehicle] = new_route
        if it == 100:
            return solution
        else:
            it += 1
    c = calls_to_solution(new_calls)
    return c
Пример #2
0
def try_for_best(solution):
    # print("Starting solution:", solution)
    new_solutions = []
    calls = get_calls_including_zeroes(solution)
    dummy_calls = calls[x.vehicles + 1]
    # print("Dummy calls:", dummy_calls)
    most_expensive_calls = get_most_expensive_calls(solution)
    most_expensive_call = 0
    for key in most_expensive_calls.keys():
        # print("Key:", key)
        if key in dummy_calls:
            most_expensive_call = key
            break

    if most_expensive_call == 0:
        return solution

    # print(most_expensive_call)

    dummy_most_expensive_removed = [i for i in dummy_calls if i != most_expensive_call]
    calls[x.vehicles + 1] = dummy_most_expensive_removed
    # print(dummy_most_expensive_removed)

    vehicle = random.randrange(1, len(x.vehicles_dict))
    # print("Vehicle", vehicle)
    new_calls = copy.deepcopy(calls)
    new_calls[vehicle].insert(0, most_expensive_call)
    if len(calls[vehicle]) > 1:
        for index in range(len(calls[vehicle])):
            # print("Calls in loop:", calls)
            newnew_calls = copy.deepcopy(new_calls)
            newnew_calls[vehicle].insert(index + 1, most_expensive_call)
            new_solutions.append(calls_to_solution(newnew_calls))
            # print("New calls in loop:", newnew_calls)

    else:
        # print("Calls:", calls)
        new_calls[vehicle].insert(0, most_expensive_call)
        # print("New calls:", new_calls)
        new_solutions.append(calls_to_solution(new_calls))

    best_solution = solution
    # print("New solutions:", new_solutions)
    for sol in new_solutions:
        if f(sol) < f(best_solution) or random.uniform(0, 1) < 0.25:
            # print("Chosen solution:", sol)
            return sol

    return solution
Пример #3
0
def tabu_shuffle(solution):
    calls = get_calls_including_zeroes(solution)
    rand_vehicle = random.randrange(1, x.vehicles)

    if len(calls[rand_vehicle]) < 2:
        return solution

    current = solution
    new_sol = swingers(solution)
    # print("New sol:", new_sol)
    if f(new_sol) < f(current):
        current = new_sol
    elif check_solution(new_sol) and random.uniform(0, 1) < 0.33:
        current = new_sol
    return current
def one_reinsert_most_expensive_from_dummy(solution):
    most_expensive_calls = most_expensive_dummy(solution)
    if not most_expensive_calls:
        return solution
    calls = get_calls_including_zeroes(solution)
    chosen_call = next(iter(most_expensive_calls))
    vehicle = 0
    for i in range(1, len(calls.keys())):
        if chosen_call in x.vehicles_dict.get(i).valid_calls:
            vehicle = i
            break
    if vehicle == 0:
        return solution
    calls[x.vehicles + 1] = [i for i in calls[x.vehicles + 1] if i != chosen_call]
    calls[vehicle].insert(0, chosen_call)
    calls[vehicle].insert(0, chosen_call)
    return calls_to_solution(calls)
Пример #5
0
def swingers(solution):
    # print(solution)
    calls = route_planner(solution)
    if not calls:
        return solution
    calls_w_0 = get_calls_including_zeroes(solution)
    # print("All calls:", calls)
    for vehicle in calls:
        # print("Vehicle:", vehicle)
        # print("Calls:", calls[vehicle])
        if len(calls[vehicle]) <= 2:
            continue
        else:
            calls_w_0[vehicle] = neighbor_switch(calls, vehicle)
            # print(calls_w_0)
        calls_w_0[vehicle].append(0)

    # print("Calls after a swing:", calls_to_solution(calls_w_0))
    return calls_to_solution(calls_w_0)
def one_reinsert_most_expensive_call(solution):
    calls = get_calls_including_zeroes(solution)
    if not calls[x.vehicles + 1]:
        return solution
    cost_no_transport = get_most_expensive_calls(solution)
    cnt_list = list(cost_no_transport.keys())
    if not cnt_list or len(cnt_list) < 3:
        return solution
    most_expensive_call = cnt_list[random.randrange(0, 3)]
    if most_expensive_call in calls[x.vehicles + 1]:
        calls[x.vehicles + 1].remove(most_expensive_call)
        calls[x.vehicles + 1].remove(most_expensive_call)
        for i in range(1, x.vehicles + 2):
            vehicle = x.vehicles_dict[i]
            if most_expensive_call in vehicle.valid_calls:
                calls[i].insert(random.randrange(0, len(calls[i])), most_expensive_call)
                calls[i].insert(random.randrange(0, len(calls[i])), most_expensive_call)
                break
    return calls_to_solution(calls)
Пример #7
0
def try_for_best(solution):
    if solution in tested_solutions:
        return solution
    tested_solutions.append(solution)
    new_solutions = []
    calls = get_calls_including_zeroes(solution)
    dummy_calls = calls[x.vehicles + 1]
    most_expensive_calls = most_expensive_dummy(solution)
    mec = list(most_expensive_calls.keys())

    most_expensive_call = mec.pop(0)
    calls_wo_dummy = copy.deepcopy(calls)
    calls_wo_dummy.pop(x.vehicles + 1)
    sample = random.sample(calls_wo_dummy.keys(), 2)
    dummy_most_expensive_removed = [i for i in dummy_calls if i != most_expensive_call]
    calls[x.vehicles + 1] = dummy_most_expensive_removed
    for vehicle in sample:
        new_calls = copy.deepcopy(calls)
        new_calls[vehicle].insert(0, most_expensive_call)
        if len(calls[vehicle]) > 1:
            for index in range(len(calls[vehicle])):
                # print("Calls in loop:", calls)
                newnew_calls = copy.deepcopy(new_calls)
                newnew_calls[vehicle].insert(index + 1, most_expensive_call)
                if calls_to_solution(newnew_calls) in tested_solutions:
                    continue
                else:
                    new_solutions.append(calls_to_solution(newnew_calls))
                    tested_solutions.append(calls_to_solution(newnew_calls))
                # print("New calls in loop:", newnew_calls)

        else:
            # print("Calls:", calls)
            new_calls[vehicle].insert(0, most_expensive_call)
            # print("New calls:", new_calls)
            new_solutions.append(calls_to_solution(new_calls))
            tested_solutions.append(calls_to_solution(new_calls))

    best_solution = solution
    for sol in new_solutions:
        if f(sol) < f(best_solution) and check_solution(sol):
            return sol
    return solution
Пример #8
0
def best_route(solution):
    calls = route_planner(solution)
    vehicle = random.randrange(1, x.vehicles + 1)
    if not calls[vehicle]:
        return solution
    route = calls[vehicle]
    global tested_solutions
    if route in tested_solutions:
        return solution
    tested_solutions.append(route)
    # if len(route) > 7:
    #     return solution
    all_combs = list(set(itertools.permutations(route)))

    nl = [list(row) for row in all_combs]
    best_solution = solution
    for c in nl:
        rt = copy.deepcopy(get_calls_including_zeroes(solution))
        rt[vehicle] = c
        rt[vehicle].append(0)
        # print(calls_to_solution(rt))
        if f(calls_to_solution(rt)) < f(best_solution):
            best_solution = calls_to_solution(rt)
    return best_solution