def _predict_patches(self, dataset, batch_size): ''' Using the params.pkl or instantiated model to create patch predictions. ''' dim = self.dataset_config.output_dim compute_output = util.create_predictor(dataset, self.model_config, self.params, batch_size) result_output, result_label = util.batch_predict(compute_output, dataset, dim, batch_size) return result_output, result_label
def _predict_patches(self, dataset, batch_size): ''' Using the params.pkl or instantiated model to create patch predictions. ''' dim = self.dataset_config.output_dim compute_output = util.create_predictor(dataset, self.model_config, self.params, batch_size) result_output, result_label = util.batch_predict( compute_output, dataset, dim, batch_size) return result_output, result_label
def visualize(self, image_path, batch_size, best_trade_off=0.1): dataset, dim = self.create_data_from_image(image_path) compute_output = util.create_predictor(dataset, self.model_config, self.model_params, batch_size) predictions, labels = util.batch_predict(compute_output, dataset, self.dim_label, batch_size) image = self.combine_to_image(predictions, dim) #Need to have Mass_road structure TODO: argument dir = os.path.abspath(image_path + "../../../") #TODO: not the same extension for labels and data. In the case of MASS. file_ext = os.path.basename(image_path).split('.')[-1] label_ext = os.listdir(dir + "/labels/")[0].split('.')[-1] label_path = dir + "/labels/" + os.path.basename(image_path).split('.')[-2] + "." + label_ext label_image = Image.open(label_path, 'r') raw_image = Image.open(image_path, 'r') hit_image = self._create_hit_image(image, raw_image, label_image , best_trade_off) return image, hit_image, raw_image, label_image