Пример #1
0
def fitbias(ph, spectra, binit=[1, 0, 0, 0, 1], k=None, kmax=None):


    if k is not None and kmax is not None:
        ik = np.where(k > kmax)[0][0]
    else: ik = len(ph)
    tomin = lambda b: sum( (ph - tools.getmodel(spectra, [1] + list(b[:-1])) - b[-1]) [:ik]**2 ) #added shot noise
    rep = minimize(tomin, binit, method='Nelder-Mead', options={'maxfev':10000})
    #rep = minimize(tomin, binit,  options={'maxfev':10000})
    return rep
Пример #2
0
                    spectra = np.loadtxt(
                        './output/%s/spectra-%04d-%04d-%04d-R%d.txt' %
                        (subf, aa * 10000, bs, nc, Rsm)).T
                k, spectra = spectra[0], spectra[1:]
                header = header.split(',')
                iv = len(header)

                fig, axar = plt.subplots(1, 2, figsize=(8, 4))
                for ik, kmax in enumerate([0.1, 0.3, 0.5, 0.8, 1.0]):

                    binit = [1., 0, 0, 0, sn]
                    rep = fitbias(ph, spectra, k=k, kmax=kmax, binit=binit)
                    print(rep)
                    bvec = [1] + list(rep.x[:-1])

                    model = tools.getmodel(spectra, bvec) + rep.x[-1]

                    axis = axar[0]
                    if ik == 0: axis.plot(k, ph, 'k', label='Halo', lw=2)
                    axis.plot(k, model, 'C%d--' % ik, lw=2, alpha=0.7)
                    axis.set_xlabel('k (h/Mpc)', fontsize=12)
                    axis.set_ylabel('$P$', fontsize=12)
                    axis.legend(fontsize=12)
                    axis.loglog()
                    axis.grid()

                    axis = axar[1]
                    axis.plot(k,
                              model / ph,
                              'C%d-' % ik,
                              label='k=%0.2f' % kmax,
Пример #3
0
            header = '1, b1, b2, bg, bk'
            if zadisp:
                np.savetxt('./output/%s/spectraza-%04d-%04d-%04d-R%d.txt' %
                           (subf, aa * 10000, bs, nc, Rsm),
                           np.vstack([k, spectra]).T.real,
                           header='k / ' + header,
                           fmt='%0.4e')
            else:
                np.savetxt('./output/%s/spectra-%04d-%04d-%04d-R%d.txt' %
                           (subf, aa * 10000, bs, nc, Rsm),
                           np.vstack([k, spectra]).T.real,
                           header='k / ' + header,
                           fmt='%0.4e')
            header = header.split(',')
            bvec = [1, 1, 1, 1, 1]
            model = tools.getmodel(spectra, bvec)
            iv = len(header)

            fig, ax = plt.subplots(1, iv, figsize=(15, 4), sharex=True)
            counter = 0

            for i in range(iv):
                for j in range(i, iv):
                    ax[i].plot(k,
                               spectra[counter],
                               '-C%d' % j,
                               label=header[j])
                    ax[i].plot(k, -spectra[counter], '--C%d' % j)
                    counter += 1
                ax[i].set_title(header[i])