def seeResult(self): image_list = os.listdir(self.images_path) image_list.sort(key=lambda x: int(x[:-4])) for all_i, name in enumerate(image_list): try: print("当前查看的图片为:", name) filename = name[:-4] image_path = os.path.join(self.images_path, name) txt_path = os.path.join(self.annotations_path, filename + ".txt") image = cv.imread(image_path) txt_file = open(txt_path) txt_info = txt_file.readlines() txt_file.close() ann_infos = [] for line in txt_info: ann = line.split(',')[:-1] ann_int = map(int, ann) number_ann = list(ann_int) category_id, x1, y1, x2, y2 = number_ann print("当前的bbox的size为:", (x2 - x1) * (y2 - y1)) print("*************") ann_infos.append((category_id, x1, y1, x2, y2)) tools.visualize(ann_infos, image) cv.waitKey(0) except: print("发生错误,错误位置在名称{}".format(name)) cv.waitKey(1) cv.destroyAllWindows()
def refresh_data(self, game, parent): for row in range(0, settings.ROWS): for column in range(0, settings.COLUMNS): text = str(game.display_board[row][column]) self.element = QTableWidgetItem(text) if text != '': tools.visualize(self.element, text) self.setItem(row, column, self.element) if game.status != settings.GAME_STATUS['playing']: parent.popup(game.status) self.game.display_board = game.display_board
def main(img_path, json_path=None, viz=True, renderer=None, config=None): sess = tf.Session() model = RunModel(config, sess=sess) cropped_imgs, params, og_imgs = preprocess_image(img_path, config.img_size, json_path) # Add batch dimension: 1 x D x D x 3 input_imgs = [np.expand_dims(input_img, 0) for input_img in cropped_imgs] # Theta is the 85D vector holding [camera, pose, shape] # where camera is 3D [s, tx, ty] # pose is 72D vector holding the rotation of 24 joints of SMPL in axis angle format # shape is 10D shape coefficients of SMPL for k in range(len(input_imgs)): joints, verts, cams, joints3d, theta = model.predict(input_imgs[k], get_theta=True) print(joints.shape) print(verts.shape) print(cams.shape) print(joints3d.shape) print(theta.shape) if viz: visualize(og_imgs[k], params[k], joints[0], verts[0], cams[0], renderer)
from tools import preprocess, confusion, visualize import matplotlib.pyplot as plt images_train, images_test, images_valid, labels_train, labels_test, labels_valid = preprocess( ) neigh = KNeighborsClassifier(n_neighbors=9, weights='distance') neigh.fit(images_train, labels_train) result = neigh.predict(images_test) matrix = confusion(labels_test, result) print(matrix) print(accuracy_score(labels_test, result)) figure, ax = plt.subplots() plt.ylabel('Predictions') plt.xlabel('Actual') plt.title('Confusion Matrix for KNearestNeighbor') plt.xticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) plt.yticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) ax.matshow(matrix, cmap=plt.cm.Spectral) x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] for i in x: for j in x: c = matrix[j, i] ax.text(i, j, str(c), va='center', ha='center') plt.show() visualize(images_test, labels_test, result)
def showPrediction(coposition): visualize(coposition, category_id_to_name)
import argparse import yaml import tools parser = argparse.ArgumentParser() parser.add_argument('-visualize', action='store_true') parser.add_argument('-predict', action='store_true') parser.add_argument('-slice', action='store_true') parser.add_argument('-evaluate', action='store_true') args = parser.parse_args() with open('./configs.yaml', 'r') as stream: try: configs = yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc) if args.visualize: tools.visualize(configs) elif args.predict: tools.predict(configs) elif args.slice: tools.slice_vids(configs) elif args.evaluate: tools.evaluate(configs) else: raise ValueError( 'Did not set flag: -visualize, -predict, -slice, -evaluate')
bas_predict = basTree.predict(images_test) mod_predict = modTree.predict(images_test) cust_predict = custTree.predict(cimg_test) # create the confusion matrix for the base tree cm_bas = tools.confusion(labels_test, bas_predict) print('Classification Report for Basic Tree') print('Basic Tree Test Accuracy') print(accuracy_score(labels_test, bas_predict)) print(classification_report(labels_test, bas_predict)) tools.dispMatrix(cm_bas, 'Base Decision Tree Confusion Matrix') # Look at visualizations for base decision tree print('Visualization of 3 mistakes made in base tree') tools.visualize(images_test, labels_test, bas_predict) # create the confusion matrix for the modified tree cm_mod = tools.confusion(labels_test, mod_predict) print('Classification Report for Modified Tree') print('Modified Tree Test Accuracy') print(accuracy_score(labels_test, mod_predict)) print(classification_report(labels_test, mod_predict)) tools.dispMatrix(cm_mod, 'Modified Decision Tree Confusion Matrix') # Look at the visualizations for the modified decision tree print('Visualization of 3 mistakes made in modified tree') tools.visualize(images_test, labels_test, mod_predict) # create the confusion matrix for the Custom Features Tree cm_cust = tools.confusion(labels_test, cust_predict) print(cm_cust)