Пример #1
0
    def test_split_out_both_servers_and_lb_nodes_if_too_long(self):
        """
        Both 'lb_nodes' and 'servers' are split out if the event is too long
        to accomodate both.  The longest one is removed first.
        """
        event = {
            'hi': 'there',
            'desired': self.state,
            'steps': ['steps'],
            'lb_nodes': ['1', '2', '3', '4'],
            'servers': ['1', '2', '3']
        }
        message = "Executing convergence"

        short_event = {
            k: event[k]
            for k in event if k not in ('servers', 'lb_nodes')
        }
        result = split_execute_convergence(
            event.copy(),
            max_length=len(json.dumps(short_event, default=repr)) + 5)

        expected = [(short_event, message),
                    (dissoc(event, 'desired', 'steps', 'servers'), message),
                    (dissoc(event, 'desired', 'steps', 'lb_nodes'), message)]

        self.assertEqual(result, expected)
Пример #2
0
    def test_split_out_lb_nodes_if_lb_nodes_longer(self):
        """
        If the 'lb_nodes' parameter is longer than the 'servers' parameter,
        and the event is otherwise sufficiently small, 'lb_nodes' is the
        param that gets split into another message.
        """
        event = {
            'hi': 'there',
            'desired': self.state,
            'steps': ['steps'],
            'lb_nodes': ['1', '2', '3', '4'],
            'servers': ['1', '2', '3']
        }
        message = "Executing convergence"

        # assume that removing 'servers' would make it the perfect length, but
        # since 'lb_nodes' is bigger, it's the thing that gets removed.
        length = len(
            json.dumps({k: event[k]
                        for k in event if k != 'servers'},
                       default=repr), )

        result = split_execute_convergence(event.copy(), max_length=length)
        expected = [(dissoc(event, 'lb_nodes'), message),
                    (dissoc(event, 'desired', 'steps', 'servers'), message)]

        self.assertEqual(result, expected)
Пример #3
0
def test_dissoc():
    assert dissoc({"a": 1}, "a") == {}
    assert dissoc({"a": 1, "b": 2}, "a") == {"b": 2}
    assert dissoc({"a": 1, "b": 2}, "b") == {"a": 1}

    # Verify immutability:
    d = {'x': 1}
    oldd = d
    d2 = dissoc(d, 'x')
    assert d is oldd
    assert d2 is not oldd
Пример #4
0
def test_dissoc():
    assert dissoc({"a": 1}, "a") == {}
    assert dissoc({"a": 1, "b": 2}, "a") == {"b": 2}
    assert dissoc({"a": 1, "b": 2}, "b") == {"a": 1}

    # Verify immutability:
    d = {'x': 1}
    oldd = d
    d2 = dissoc(d, 'x')
    assert d is oldd
    assert d2 is not oldd
Пример #5
0
    def test_dissoc(self):
        D, kw = self.D, self.kw
        assert dissoc(D({"a": 1}), "a") == D({})
        assert dissoc(D({"a": 1, "b": 2}), "a") == D({"b": 2})
        assert dissoc(D({"a": 1, "b": 2}), "b") == D({"a": 1})

        # Verify immutability:
        d = D({'x': 1})
        oldd = d
        d2 = dissoc(d, 'x')
        assert d is oldd
        assert d2 is not oldd
Пример #6
0
    def test_dissoc(self):
        D, kw = self.D, self.kw
        assert dissoc(D({"a": 1}), "a") == D({})
        assert dissoc(D({"a": 1, "b": 2}), "a") == D({"b": 2})
        assert dissoc(D({"a": 1, "b": 2}), "b") == D({"a": 1})

        # Verify immutability:
        d = D({'x': 1})
        oldd = d
        d2 = dissoc(d, 'x')
        assert d is oldd
        assert d2 is not oldd
 async def delete(self, id_):
     self.items, has_changed = pipe(
         id_,
         lambda key: dissoc(self.items, key),
         lambda new: (new, len(self.items) != len(new)),
     )
     return has_changed
Пример #8
0
 def _dispatch(self, request: Tuple[str, ...]):
     log.debug("got a request", request=request)
     request_type, *request_arg = request
     try:
         if request_type == "submit":
             job_name, fname = request_arg
             log.debug("submitting a task", fname=fname, job_name=job_name)
             job_id = self.submit(job_name, fname)
             return job_id
         elif request_type == "cancel":
             job_id = request_arg[0]
             log.debug("got a cancel request", job_id=job_id)
             self.cancel(job_id)
             return None
         elif request_type == "queue":
             log.debug("got a queue request")
             # remove the "proc" entries because they aren't pickable
             return {
                 job_id: dissoc(info, "proc")
                 for job_id, info in self.queue().items()
             }
         else:
             log.debug("got unknown request")
     except Exception as e:
         return e
Пример #9
0
def main():
    desc = _read_desc(_desc_path())
    pprint(desc)

    initial_state = {'desc': tzd.dissoc(desc, 'worker_pos'),
                     'worker': {'pos': desc['worker_pos'],
                                'orien': 'r'},
                     'wrapped_shells': [_pt2shell(desc['worker_pos'])]}

    states = [initial_state]
    actions = []
    shutil.rmtree(_output_image_dir(_desc_path()), ignore_errors=True)
    for turn_i in range(500):
        print('- turn {}'.format(turn_i))
        prev_state = states[turn_i]
        action, intermediate_state = _predict_action(prev_state)

        if turn_i % 50 == 0:
        # if True:
            _export_state(intermediate_state, turn_i, _desc_path(), draw_opts={'render_scale': 10})

        if action is None:
            break

        next_state = _update_state(intermediate_state, action)
        states.append(next_state)
        actions.append(action)

    _export_actions(actions, _output_actions_filepath(_desc_path()))
Пример #10
0
def main(db_uri, tablename):
    click.echo("Connecting to database...")
    database = SQLDatabase(db_uri, tablename)

    click.echo("Checking existing number of evaluations...")
    if len(database) < 2:  # Check if there are enough existing datapoints
        for point in initial_points:
            target = black_box_function(**point)
            database.append({**point, "target": target})

    click.echo("Creating optimizer and utility function...")
    optimizer = BayesianOptimization(f=None, pbounds=pbounds, random_state=1)
    utility_function = UtilityFunction(kind="ucb", kappa=3, xi=1)

    click.echo("Registering evaluations with optimizer...")
    for evaluation in database:
        optimizer.register(dissoc(evaluation, "target"), evaluation["target"])

    while True:
        try:
            point = optimizer.suggest(utility_function)
            click.echo(f"Evaluating black-box function for {point}")
            target = black_box_function(**point)
            click.echo(f"Got {target}")
            click.echo("Registering with database...")
            database.append({**point, "target": target})
            click.echo("Registering with optimizer...")
            optimizer.register(point, target)
        except KeyboardInterrupt:
            click.echo("Exiting...")
            break
Пример #11
0
 def pop_nan(self, dct):
       """Given dict, return dict with keys popped where isnan(val)."""
       res = dict(dct)
       nans = valfilter(
           lambda x: (
               x is None or str(x).strip() == '' or
               (isinstance(x, (Decimal, float)) and isnan(x))), res)
       return dissoc(res, *nans.keys())
Пример #12
0
 def remove_factor(self, factor):
     factor_name = factor if isinstance(factor, str) else factor.name
     py_assert(factor_name in self.names, ValueError,
                 'unable to remove factor_name {0}, which does not exist in current container'.format(factor_name))
     self.names.remove(factor_name)
     self.data.drop(factor_name, axis=1, inplace=True)
     self.property = dissoc(self.property, factor_name)
     return
Пример #13
0
 def parse(raw_form: str):
     form_data = valmap(first, parse_qs(raw_form, strict_parsing=True))
     return RsvpFormData(guest_id=form_data[RsvpFormData.GUEST_ID_FIELD],
                         party_id=form_data[RsvpFormData.PARTY_ID_FIELD],
                         attending=valmap(
                             _parse_bool,
                             dissoc(form_data, RsvpFormData.GUEST_ID_FIELD,
                                    RsvpFormData.PARTY_ID_FIELD)))
    def queue(self, only_me: bool = True):
        # only_me doesn't do anything, but the argument is there
        # because it is in the other schedulers.

        # remove the "proc" entries because they aren't pickable
        return {
            job_id: dissoc(info, "proc")
            for job_id, info in self._current_queue.items()
        }
Пример #15
0
 def remove_factor(self, factor):
     factor_name = factor if isinstance(factor, str) else factor.name
     py_assert(
         factor_name in self.names, ValueError,
         'unable to remove factor_name {0}, which does not exist in current container'
         .format(factor_name))
     self.names.remove(factor_name)
     self.data.drop(factor_name, axis=1, inplace=True)
     self.property = dissoc(self.property, factor_name)
     return
Пример #16
0
 def _get_user_site_details(user_data):
     user = []
     allowed_keys = {'user_id', 'site_url', 'site_name'}
     remapped_keys = {'user_id': 'site_user_id'}
     keys_to_dissoc = set(user_data['items'][0].keys()) - allowed_keys
     for site in user_data['items']:
         filtered_data = dissoc(site, *keys_to_dissoc)
         remapped_data = apply_key_map(remapped_keys, filtered_data)
         user.append(remapped_data)
     return user
Пример #17
0
    def fit(self, X, y=None, sample_weight=None, exposure=None):
        fit_args = self._process_args(X=X,
                                      y=y,
                                      sample_weight=sample_weight,
                                      exposure=exposure)

        # Create internal cross-validating estimators
        self.cross_validating_estimators_ = OrderedDict(
            (k,
             CrossValidatingEstimator(v,
                                      cv=self.cv,
                                      n_jobs=self.n_jobs,
                                      verbose=self.verbose,
                                      pre_dispatch=self.pre_dispatch))
            for k, v in self.ordered_regressors.items())

        #         frozendict(valmap(lambda x:
        #             CrossValidatingEstimator(x, cv=self.cv, n_jobs=self.n_jobs,
        #                                      verbose=self.verbose,
        #                                      pre_dispatch=self.pre_dispatch), self.regressors).items())

        # Fit the inner regressors using cross-validation
        for est_name, est in self.cross_validating_estimators_.items():
            if self.verbose > 0:
                print('Super learner is fitting %s...' % est_name)
            est.fit(**fit_args)
            if self.verbose > 0:
                print('Super learner finished fitting %s.' % est_name)

        # Fit the outer meta-regressor.  Cross validation is not used here.  Instead,
        # users of the SuperLearner are free to wrap the SuperLearner in a
        # CrossValidatingEstimator.
        meta_fit_args = assoc(
            fit_args, 'X',
            np.concatenate(tuple(
                map(growd(2), [
                    est.cv_predictions_
                    for est in self.cross_validating_estimators_.values()
                ])),
                           axis=1))
        if self.y_transformer is not None:
            self.y_transformer_ = clone(self.y_transformer).fit(**fit_args)
            meta_fit_args = assoc(
                meta_fit_args, 'y',
                self.y_transformer_.transform(
                    **dissoc(fit_args, 'sample_weight', 'y')))

        if self.verbose > 0:
            print('Super learner fitting meta-regressor...')
        self.meta_regressor_ = clone(self.meta_regressor).fit(**meta_fit_args)
        if self.verbose > 0:
            print('Super learner meta-regressor fitting complete.')

        # All scikit-learn compatible estimators must return self from fit
        return self
Пример #18
0
def test_dicttoolz():
    d1 = {'foo': 'bar'}
    d2 = {'baz': 'quux'}
    assert_that(merge(d1, d2)).is_equal_to({'foo': 'bar', 'baz': 'quux'})
    assert_that(d1).is_equal_to({'foo': 'bar'})
    assert_that(assoc(d1, 'a', 1)).is_equal_to({'foo': 'bar', 'a': 1})
    assert_that(dissoc(d2, 'baz')).is_equal_to({})
    struct = {'a': [{'c': 'hello'}]}
    assert_that(get_in(['a', 0, 'c'], struct)).is_equal_to(struct['a'][0]['c'])
    assert_that(get_in(['a', 0, 'd'], struct,
                       'not found')).is_equal_to('not found')
Пример #19
0
    def as_effect(self):
        """Produce an :obj:`Effect` to update a stack."""
        stack_config = dissoc(thaw(self.stack_config), 'stack_name')
        eff = update_stack(stack_name=self.stack.name, stack_id=self.stack.id,
                           stack_args=stack_config)

        def report_success(result):
            retry_msg = 'Waiting for stack to update'
            return ((StepResult.RETRY, [ErrorReason.String(retry_msg)])
                    if self.retry else (StepResult.SUCCESS, []))

        return eff.on(success=report_success)
Пример #20
0
    def as_effect(self):
        """Produce an :obj:`Effect` to update a stack."""
        stack_config = dissoc(thaw(self.stack_config), 'stack_name')
        eff = update_stack(stack_name=self.stack.name, stack_id=self.stack.id,
                           stack_args=stack_config)

        def report_success(result):
            retry_msg = 'Waiting for stack to update'
            return ((StepResult.RETRY, [ErrorReason.String(retry_msg)])
                    if self.retry else (StepResult.SUCCESS, []))

        return eff.on(success=report_success)
Пример #21
0
    def test_split_out_both_servers_and_lb_nodes_if_too_long(self):
        """
        Both 'lb_nodes' and 'servers' are split out if the event is too long
        to accomodate both.  The longest one is removed first.
        """
        event = {'hi': 'there', 'desired': self.state, 'steps': ['steps'],
                 'lb_nodes': ['1', '2', '3', '4'], 'servers': ['1', '2', '3']}
        message = "Executing convergence"

        short_event = {k: event[k] for k in event
                       if k not in ('servers', 'lb_nodes')}
        result = split_execute_convergence(
            event.copy(),
            max_length=len(json.dumps(short_event, default=repr)) + 5)

        expected = [
            (short_event, message),
            (dissoc(event, 'desired', 'steps', 'servers'), message),
            (dissoc(event, 'desired', 'steps', 'lb_nodes'), message)
        ]

        self.assertEqual(result, expected)
Пример #22
0
def _predict_action(state):
    mine = shapely.geometry.Polygon(state['desc']['mine_shell'])
    obstacles = [shapely.geometry.Polygon(sh) for sh in state['desc']['obstacle_shells']]
    obstacle = shapely.ops.unary_union(obstacles)
    situable = mine.difference(obstacle)
    wrappeds = [shapely.geometry.Polygon(sh) for sh in state['wrapped_shells']]
    wrapped = shapely.ops.unary_union(wrappeds)
    not_wrapped = situable.difference(wrapped)

    if not_wrapped.area < 1.0:
        return None, state

    last_move = state.get('last_move', 'W')
    for move in [last_move, 'W', 'S', 'A', 'D']:
        proj = _move_projection_center(state['worker']['pos'], move)
        if not_wrapped.contains(proj):
            return move, tzd.dissoc(state, 'path_pts_to_not_wrapped')

    if not state.get('path_pts_to_not_wrapped'):
        target_tile = tzf.thread_first(not_wrapped.representative_point(),
                                       _shapely_point2pt,
                                       _snap_to_tile)
        print('Finding shortest path from tile {} to {}'.format(state['worker']['pos'], target_tile))

        if tzd.get_in(['cache', 'incidence_m'], state) is None:
            incidence_m = _incidence_matrix(situable)
            state = tzd.assoc_in(state, ['cache', 'incidence_m'], incidence_m)
        else:
            incidence_m = state['cache']['incidence_m']

        target_vertex_ind = _incidence_ind(target_tile[0], target_tile[1], x_size=math.ceil(situable.bounds[2]))
        path_dists, path_predecessors = sp.sparse.csgraph.shortest_path(csgraph=incidence_m,
                                                                        directed=False,
                                                                        return_predecessors=True,
                                                                        unweighted=True,
                                                                        indices=target_vertex_ind)
        start_vertex_ind = _incidence_ind(state['worker']['pos'][0],
                                          state['worker']['pos'][1],
                                          x_size=math.ceil(situable.bounds[2]))

        path_inds = _path_inds(path_predecessors, start_vertex_ind)
        path_pts = [_incidence_pt(ind, x_size=math.ceil(situable.bounds[2]))
                    for ind in path_inds]
        print('Found path: {}'.format(path_pts))
        state = tzd.assoc(state, 'path_pts_to_not_wrapped', path_pts)

    path_move = _projection_pt_move(state['worker']['pos'], state['path_pts_to_not_wrapped'][0])
    if path_move is not None:
        return path_move, tzd.update_in(state, ['path_pts_to_not_wrapped'], lambda p: p[1:])

    return 'Z', state
Пример #23
0
    def test_split_out_lb_nodes_if_lb_nodes_longer(self):
        """
        If the 'lb_nodes' parameter is longer than the 'servers' parameter,
        and the event is otherwise sufficiently small, 'lb_nodes' is the
        param that gets split into another message.
        """
        event = {
            "hi": "there",
            "desired": self.state,
            "steps": ["steps"],
            "lb_nodes": ["1", "2", "3", "4"],
            "servers": ["1", "2", "3"],
        }
        message = "Executing convergence"

        # assume that removing 'servers' would make it the perfect length, but
        # since 'lb_nodes' is bigger, it's the thing that gets removed.
        length = len(json.dumps({k: event[k] for k in event if k != "servers"}, default=repr))

        result = split_execute_convergence(event.copy(), max_length=length)
        expected = [(dissoc(event, "lb_nodes"), message), (dissoc(event, "desired", "steps", "servers"), message)]

        self.assertEqual(result, expected)
Пример #24
0
    def test_split_out_lb_nodes_if_lb_nodes_longer(self):
        """
        If the 'lb_nodes' parameter is longer than the 'servers' parameter,
        and the event is otherwise sufficiently small, 'lb_nodes' is the
        param that gets split into another message.
        """
        event = {'hi': 'there', 'desired': self.state, 'steps': ['steps'],
                 'lb_nodes': ['1', '2', '3', '4'], 'servers': ['1', '2', '3']}
        message = "Executing convergence"

        # assume that removing 'servers' would make it the perfect length, but
        # since 'lb_nodes' is bigger, it's the thing that gets removed.
        length = len(
            json.dumps({k: event[k] for k in event if k != 'servers'},
                       default=repr),)

        result = split_execute_convergence(event.copy(), max_length=length)
        expected = [
            (dissoc(event, 'lb_nodes'), message),
            (dissoc(event, 'desired', 'steps', 'servers'), message)
        ]

        self.assertEqual(result, expected)
Пример #25
0
def filterFeatures(match):
    usableKeys = ['players', 'radiant_win', 'hero_id', 'player_slot']
    isUsable = lambda k: k in usableKeys
    toplvlFiltered = keyfilter(isUsable, match)

    filteredPlayers = []
    for player in toplvlFiltered['players']:
        side = decideSide(player['player_slot'])
        playerData = assoc(keyfilter(isUsable, player), 'team', side)
        playerData = dissoc(playerData, 'player_slot')
        filteredPlayers.append(playerData)
    toplvlFiltered['players'] = filteredPlayers

    return toplvlFiltered
Пример #26
0
    def test_split_out_both_servers_and_lb_nodes_if_too_long(self):
        """
        Both 'lb_nodes' and 'servers' are split out if the event is too long
        to accomodate both.  The longest one is removed first.
        """
        event = {
            "hi": "there",
            "desired": self.state,
            "steps": ["steps"],
            "lb_nodes": ["1", "2", "3", "4"],
            "servers": ["1", "2", "3"],
        }
        message = "Executing convergence"

        short_event = {k: event[k] for k in event if k not in ("servers", "lb_nodes")}
        result = split_execute_convergence(event.copy(), max_length=len(json.dumps(short_event, default=repr)) + 5)

        expected = [
            (short_event, message),
            (dissoc(event, "desired", "steps", "servers"), message),
            (dissoc(event, "desired", "steps", "lb_nodes"), message),
        ]

        self.assertEqual(result, expected)
Пример #27
0
def test_insert(mock_client_class):
    mock_mongo_client = mongomock.MongoClient()
    mock_client_class.return_value = mock_mongo_client

    INPUT_DOCS = [{'name': 'A'}, {'name': 'B'}]

    (INPUT_DOCS
     | beam.transforms.Map(lambda d: pymongo.InsertOne(d))
     | beam.transforms.ParDo(
         MongoBulkWriteFn(db_uri='mongodb://localhost/db',
                          collection_name='test_beam',
                          db_name='db',
                          order_writes=True)))

    found_objs = mock_mongo_client.get_database('db')['test_beam'].find({})
    no_id_objs = map(lambda o: dissoc(o, '_id'), found_objs)
    assert no_id_objs == INPUT_DOCS
Пример #28
0
def wordcloud():
    if DEVELOPMENT_MODE:
        with open('wordcloud.json') as f:
            return jsonify(json.load(f))
    else:
        graph = facebook.GraphAPI(access_token=FACEBOOK_USER_ACCESS_TOKEN,
                                  version='2.7')

        query_string = f'fields=feed.since({SINCE})' \
            '{comments{comments{message,created_time,like_count},' \
            'message,created_time,like_count,reactions},' \
            'message,created_time,updated_time,reactions}'
        endpoint_url = f'{FACEBOOK_GROUP_ID}?{query_string}'
        feed = graph.request(endpoint_url).get('feed')

    text = ''
    for each in feed.get('data'):
        message = each.get('message')
        if message:
            text += message
            comments = each.get('comments')
            if comments:
                for comment in comments.get('data'):
                    text += comment.get('message')

                    comments_in_comment = comment.get('comments')
                    if comments_in_comment:
                        for comment_in_comment in comments_in_comment.get(
                                'data'):
                            text += comment_in_comment.get('message')

    from pythainlp.rank import rank
    from pythainlp.tokenize import word_tokenize

    word_list = word_tokenize(text, engine='newmm')
    word_count = rank(word_list)

    from toolz.dicttoolz import dissoc
    new_word_count = dissoc(word_count, ' ')
    words = []
    for each in new_word_count:
        d = {'word': each, 'value': new_word_count[each]}
        words.append(d)

    return jsonify(words)
Пример #29
0
 def test_delta_with_delay(self):
     schedule = {
         'start': {
             'relative_timeshift': {
                 'delay': '1',
                 'time_units': TimeUnits.DAYS,
             }
         },
         'periodical': {
             'repeats': PeriodicalUnits.HOURLY,
             'every': 1,
         },
         'timezone': 'Europe/Kiev',
     }
     delta, _ = schedule_delta(schedule)
     abs_delta, _ = schedule_delta(dissoc(schedule, 'start'))
     assert delta == 86400
     assert abs_delta == 3600
Пример #30
0
    def __exit__(self, exc_type, exc_value, exc_traceback):
        if isinstance(exc_value, ModuleCacheValid) or \
            exc_type is ModuleCacheValid or \
            exc_value is ModuleCacheValid:
            inspect.stack()[1][0].f_globals.update(self.moduledata)
            return True
        elif exc_value is None:
            new_moduledata = valfilter(
                complement(flip(isinstance)(ModuleType)),
                dissoc(inspect.stack()[1][0].f_globals, *self.suppress))

            # Check that all objects can be cached
            for _ in starmap(self._check_cachability, new_moduledata.items()):
                pass

            new_metadata = self.invalidator.new_metadata(new_moduledata)
            self._put_in_cache(new_metadata, new_moduledata)
            return True
        else:
            return False
Пример #31
0
Файл: map.py Проект: tek/tryp.py
 def __sub__(self, key: A):
     return Map(dicttoolz.dissoc(self, key))
Пример #32
0
def test_outputs():
    for _name, task in encoded_dag['tasks'].items():
        output = task['output']
        assert output == sha(bencode(dissoc(task, 'output')))
Пример #33
0
        def test_is_required(self, valid_create_hero_dto):
            with pytest.raises(ValidationError) as excinfo:
                CreateHeroDto(**dissoc(valid_create_hero_dto, "location"))

            self.assert_validation_error("value_error.missing", excinfo)
Пример #34
0
 def as_json(self):
     """
     :return: a JSON dictionary representing the node.
     """
     return dissoc(attr.asdict(self), "feed_events")
Пример #35
0
 def test_is_optional(self, valid_update_hero_dto):
     assert UpdateHeroDto(**dissoc(valid_update_hero_dto, "location"))
Пример #36
0
        def test_is_required(self, valid_hero):
            with pytest.raises(ValidationError) as excinfo:
                Hero(**dissoc(valid_hero, "power_class"))

            self.assert_validation_error("value_error.missing", excinfo)
Пример #37
0
 def test_defaults(self, valid_update_hero_dto):
     assert (UpdateHeroDto(
         **dissoc(valid_update_hero_dto, "name")).name == "Unknown")
Пример #38
0
 def test_defaults(self, valid_hero):
     assert Hero(**dissoc(valid_hero, "name")).name == "Unknown"
Пример #39
0
 def dump(self):
     return dissoc(self.__dict__, '_sa_instance_state')
Пример #40
0
 def test_is_optional(self, valid_update_hero_dto):
     assert UpdateHeroDto(
         **dissoc(valid_update_hero_dto, "power_class"))