Пример #1
0
    def __call__(self, path):
        # load the image
        x = np.array(load_image(path), copy=False).astype(np.float32)

        if self.scale > 1:
            x = downsample(x, self.scale)

        # normalize it
        method = 'gmm'
        if self.affine:
            method = 'affine'
        x,metadata = normalize(x, alpha=self.alpha, beta=self.beta, num_iters=self.num_iters
                              , method=method, sample=self.sample, use_cuda=self.use_cuda)

        # save the image and the metadata
        name,_ = os.path.splitext(os.path.basename(path))
        base = os.path.join(self.dest, name)
        for f in self.formats:
            save_image(x, base, f=f)

        if self.metadata:
            # save the metadata in json format
            mdpath = base + '.metadata.json'
            if not self.affine:
                metadata['mus'] = metadata['mus'].tolist()
                metadata['stds'] = metadata['stds'].tolist()
                metadata['pis'] = metadata['pis'].tolist()
                metadata['logps'] = metadata['logps'].tolist()
            with open(mdpath, 'w') as f:
                json.dump(metadata, f, indent=4)

        return name
Пример #2
0
def main(args):
    ## load image
    path = args.file
    im = load_image(path)
    # convert PIL image to array
    im = np.array(im, copy=False).astype(np.float32)

    scale = args.scale  # how much to downscale by
    small = downsample(im, scale)

    if args.verbose:
        print('Downsample image:', path, file=sys.stderr)
        print('From', im.shape, 'to', small.shape, file=sys.stderr)

    # write the downsampled image
    with open(args.output, 'wb') as f:
        im = Image.fromarray(small)
        if small.dtype == np.uint8:
            im.save(f, 'png')
        else:
            im.save(f, 'tiff')
Пример #3
0
 def __call__(self, args):
     name, image = args
     # convert PIL image to array
     image = np.array(image, copy=False)
     image = downsample(image, self.scale)
     return name, image
Пример #4
0
def main(args):

    ## set the device
    use_cuda = False
    if args.device >= 0:
        use_cuda = torch.cuda.is_available()
        if use_cuda:
            torch.cuda.set_device(args.device)
    print('# using device={} with cuda={}'.format(args.device, use_cuda),
          file=sys.stderr)

    do_train = (args.dir_a is not None
                and args.dir_b is not None) or (args.hdf is not None)
    if do_train:
        if args.hdf is None:  #use dirA/dirB
            crop = args.crop
            dir_a = args.dir_a
            dir_b = args.dir_b
            random = np.random.RandomState(44444)

            dataset_train, dataset_val = make_paired_images_datasets(
                dir_a, dir_b, crop, random=random)
            shuffle = True
        else:  # make HDF datasets
            dataset_train, dataset_val = make_hdf5_datasets(args.hdf)
            shuffle = False

        # initialize the model
        #model = dn.DenoiseNet(32)
        model = dn.UDenoiseNet()
        if use_cuda:
            model = model.cuda()

        # train
        lr = args.lr
        batch_size = args.batch_size
        num_epochs = args.num_epochs

        num_workers = args.num_workers

        print('epoch', 'loss_train', 'loss_val')
        #criteria = nn.L1Loss()
        criteria = args.criteria

        for epoch, loss_train, loss_val in dn.train_noise2noise(
                model,
                dataset_train,
                lr=lr,
                batch_size=batch_size,
                criteria=criteria,
                num_epochs=num_epochs,
                dataset_val=dataset_val,
                use_cuda=use_cuda,
                num_workers=num_workers,
                shuffle=shuffle):
            print(epoch, loss_train, loss_val)
            sys.stdout.flush()

            # save the model
            if args.save_prefix is not None:
                path = args.save_prefix + '_epoch{}.sav'.format(epoch)
                model.cpu()
                model.eval()
                torch.save(model, path)
                if use_cuda:
                    model.cuda()

    else:  # load the saved model
        if args.model in ['L0', 'L1', 'L2']:
            if args.model in ['L0', 'L1']:
                print(
                    'ERROR: L0 and L1 models are not implemented in the current version',
                    file=sys.stderr)
                sys.exit(1)
            model = dn.load_model(args.model)
        else:
            model = torch.load(args.model)
        print('# using model:', args.model, file=sys.stderr)
        model.eval()
        if use_cuda:
            model.cuda()

    if args.stack:
        # we are denoising a single MRC stack
        with open(args.micrographs[0], 'rb') as f:
            content = f.read()
        stack, _, _ = mrc.parse(content)
        print('# denoising stack with shape:', stack.shape, file=sys.stderr)

        denoised = dn.denoise_stack(model, stack, use_cuda=use_cuda)

        # write the denoised stack
        path = args.output
        print('# writing', path, file=sys.stderr)
        with open(path, 'wb') as f:
            mrc.write(f, denoised)

    else:
        # using trained model
        # stream the micrographs and denoise as we go

        normalize = args.normalize
        if args.format_ == 'png' or args.format_ == 'jpg':
            # always normalize png and jpg format
            normalize = True

        format_ = args.format_

        count = 0
        total = len(args.micrographs)

        bin_ = args.bin
        ps = args.patch_size
        padding = args.patch_padding

        # now, stream the micrographs and denoise them
        for path in args.micrographs:
            name, _ = os.path.splitext(os.path.basename(path))
            mic = np.array(load_image(path), copy=False)
            if bin_ > 1:
                mic = downsample(mic, bin_)
            mu = mic.mean()
            std = mic.std()

            # denoise
            mic = (mic - mu) / std
            mic = dn.denoise(model,
                             mic,
                             patch_size=ps,
                             padding=padding,
                             use_cuda=use_cuda)

            if normalize:
                mic = (mic - mic.mean()) / mic.std()
            else:
                # add back std. dev. and mean
                mic = std * mic + mu

            # write the micrograph
            outpath = args.output + os.sep + name + '.' + format_
            save_image(mic, outpath)

            count += 1
            print('# {} of {} completed.'.format(count, total),
                  file=sys.stderr,
                  end='\r')

        print('', file=sys.stderr)
Пример #5
0
def main(args):
    particles = pd.read_csv(args.file, sep='\t')

    print('#', 'Loaded', len(particles), 'particles', file=sys.stderr)

    # threshold the particles
    if 'score' in particles:
        particles = particles.loc[particles['score'] >= args.threshold]
        print('#', 'Thresholding at', args.threshold, file=sys.stderr)

    print('#', 'Extracting', len(particles), 'particles', file=sys.stderr)

    N = len(particles)
    size = args.size
    resize = args.resize
    if resize < 0:
        resize = size

    #
    wrote_header = False
    read_metadata = False
    metadata = []

    # write the particles iteratively
    i = 0
    with open(args.output, 'wb') as f:
        for image_name, coords in particles.groupby('image_name'):

            print('#', image_name, len(coords), 'particles', file=sys.stderr)

            # load the micrograph
            image_name = image_name + args.image_ext
            path = os.path.join(args.image_root, image_name)
            with open(path, 'rb') as fm:
                content = fm.read()
            micrograph, header, extended_header = mrc.parse(content)
            if len(micrograph.shape) < 3:
                micrograph = micrograph[
                    np.newaxis]  # add z dim if micrograph is image

            if not wrote_header:  # load a/px and angles from micrograph header and write the stack header
                mz = micrograph.shape[0]

                dtype = micrograph.dtype

                cella = (header.xlen, header.ylen, header.zlen)
                cellb = (header.alpha, header.beta, header.gamma)
                shape = (N * mz, resize, resize)

                header = mrc.make_header(shape,
                                         cella,
                                         cellb,
                                         mz=mz,
                                         dtype=dtype)

                buf = mrc.header_struct.pack(*list(header))
                f.write(buf)
                wrote_header = True

            _, n, m = micrograph.shape

            x_coord = coords['x_coord'].values
            y_coord = coords['y_coord'].values
            scores = None
            if 'score' in coords:
                scores = coords['score'].values

            # crop out the particles
            for j in range(len(coords)):
                x = x_coord[j]
                y = y_coord[j]

                if scores is not None:
                    metadata.append((image_name, x, y, scores[j]))
                else:
                    metadata.append((image_name, x, y))

                left = x - size // 2
                upper = y - size // 2
                right = left + size
                lower = upper + size

                c = micrograph[:,
                               max(0, upper):min(n, lower),
                               max(0, left):min(m, right)]

                c = (c - c.mean()) / c.std()
                stack = np.zeros((mz, size, size), dtype=dtype)

                #stack = np.zeros((mz, size, size), dtype=dtype) + c.mean().astype(dtype)
                stack[:,
                      max(0, -upper):min(size + n - lower, size),
                      max(0, -left):min(size + m - right, size)] = c

                # write particle to mrc file
                if resize != size:
                    restack = downsample(stack, 0, shape=(resize, resize))
                    #print(restack.shape, restack.mean(), restack.std())
                    restack = (restack - restack.mean()) / restack.std()
                    f.write(restack.tobytes())
                else:
                    f.write(stack.tobytes())

                i += 1
                #print('# wrote', i, 'out of', N, 'particles', end='\r', flush=True)

    ## write the particle stack mrcs
    #with open(args.output, 'wb') as f:
    #    mrc.write(f, stack, ax=ax, ay=ay, az=az, alpha=alpha, beta=beta, gamma=gamma)

    image_name = os.path.basename(args.output)
    star_path = os.path.splitext(args.output)[0] + '.star'

    ## create the star file
    columns = ['MicrographName', star.X_COLUMN_NAME, star.Y_COLUMN_NAME]
    if 'score' in particles:
        columns.append(star.SCORE_COLUMN_NAME)
    metadata = pd.DataFrame(metadata, columns=columns)
    metadata['ImageName'] = [
        str(i + 1) + '@' + image_name for i in range(len(metadata))
    ]
    if mz > 1:
        metadata['NrOfFrames'] = mz

    micrograph_metadata = None
    if args.metadata is not None:
        with open(args.metadata, 'r') as f:
            micrograph_metadata = star.parse_star(f)
        metadata = pd.merge(metadata,
                            micrograph_metadata,
                            on='MicrographName',
                            how='left')

    if resize != size and 'DetectorPixelSize' in metadata:
        # rescale the detector pixel size
        pix = metadata['DetectorPixelSize'].values.astype(float)
        metadata['DetectorPixelSize'] = pix * (size / resize)

    ## write the star file
    with open(star_path, 'w') as f:
        star.write(metadata, f)