Пример #1
0
def test_design_var_list(turbineTypeOptimizationProblem, design_vars):
    tf = TopFarmProblem(design_vars=design_vars,
                        cost_comp=DummyCost(np.array([[2, 0, 1]]).T, ['type']),
                        driver=DOEDriver(FullFactorialGenerator(3)))
    cost, _, = tf.evaluate()
    npt.assert_equal(tf.cost, cost)
    assert tf.cost == 5
Пример #2
0
def test_3level_type_multistart_XYZ_optimization():
    design_vars = {k: v for k, v in zip('xy', optimal.T)}
    design_vars['z'] = (optimal[:, 2], 0, 4)
    xyz_problem = TopFarmProblem(design_vars,
                                 cost_comp=DummyCost(optimal,
                                                     ['x', 'y', 'z', 'type']),
                                 constraints=[
                                     SpacingConstraint(2),
                                     XYBoundaryConstraint([(0, 0), (4, 4)],
                                                          'square')
                                 ],
                                 driver=EasyScipyOptimizeDriver(disp=False))

    initial_xyz_problem = TopFarmProblem(
        design_vars={k: v
                     for k, v in zip('xyz', optimal.T)},
        cost_comp=xyz_problem,
        driver=DOEDriver(
            ListGenerator([[('x', [0, 4]), ('y', [2, 2]), ('z', [4, 1])]])))

    tf = TopFarmProblem({'type': ([0, 0], 0, 1)},
                        cost_comp=initial_xyz_problem,
                        driver=DOEDriver(FullFactorialGenerator(2)))

    cost, _, recorder = tf.optimize()
    best_index = np.argmin(recorder.get('cost'))
    initial_xyz_recorder = recorder['recorder'][best_index]
    xyz_recorder = initial_xyz_recorder.get('recorder')[0]
    npt.assert_almost_equal(xyz_recorder['cost'][-1], cost)
Пример #3
0
def test_setup_as_constraint_z():
    tf = TopFarmProblem(
        {'z': (initial[:, 2], 0, 2)},
        DummyCost(desired[:, :2], 'z'),
        driver=EasyScipyOptimizeDriver(disp=False),
    )

    tf.optimize()
    npt.assert_array_less(tf['z'], 2 + 1e-10)
Пример #4
0
def main():
    if __name__ == '__main__':
        try:
            import matplotlib.pyplot as plt
            plt.gcf()
            plot_comp = XYPlotComp()
            plot = True
        except RuntimeError:
            plot_comp = NoPlot()
            plot = False

        n_wt = 16
        site = IEA37Site(n_wt)
        windTurbines = IEA37_WindTurbines()
        wake_model = IEA37SimpleBastankhahGaussian(site, windTurbines)
        Drotor_vector = [windTurbines.diameter()] * n_wt
        power_rated_vector = [float(windTurbines.power(20) / 1000)] * n_wt
        hub_height_vector = [windTurbines.hub_height()] * n_wt
        AEPCalc = AEPCalculator(wake_model)

        def aep_func(x, y, **kwargs):
            return AEPCalc.calculate_AEP(x_i=x, y_i=y).sum(-1).sum(-1) * 10**6

        def irr_func(aep, **kwargs):
            my_irr = economic_evaluation(Drotor_vector, power_rated_vector,
                                         hub_height_vector,
                                         aep).calculate_irr()
            print(my_irr)
            return my_irr

        aep_comp = CostModelComponent(input_keys=['x', 'y'],
                                      n_wt=n_wt,
                                      cost_function=aep_func,
                                      output_key="aep",
                                      output_unit="GWh",
                                      objective=False,
                                      output_val=np.zeros(n_wt))
        irr_comp = CostModelComponent(input_keys=['aep'],
                                      n_wt=n_wt,
                                      cost_function=irr_func,
                                      output_key="irr",
                                      output_unit="%",
                                      objective=True,
                                      income_model=True)
        group = TopFarmGroup([aep_comp, irr_comp])
        problem = TopFarmProblem(
            design_vars=dict(zip('xy', site.initial_position.T)),
            cost_comp=group,
            driver=EasyRandomSearchDriver(
                randomize_func=RandomizeTurbinePosition_Circle(), max_iter=50),
            constraints=[
                SpacingConstraint(200),
                CircleBoundaryConstraint([0, 0], 1300.1)
            ],
            plot_comp=plot_comp)
        cost, state, recorder = problem.optimize()
Пример #5
0
def test_setup_as_constraint_xyz():
    desvar = dict(zip('xy', initial.T))
    desvar['z'] = (initial[:, 2], 0, 2)
    tf = TopFarmProblem(desvar,
                        DummyCost(desired, 'xyz'),
                        driver=EasyScipyOptimizeDriver(disp=False),
                        constraints=[XYBoundaryConstraint(boundary)])
    tf.optimize()
    tb_pos = tf.turbine_positions
    tol = 1e-4
    assert tb_pos[1][0] < 6 + tol  # check within border
    npt.assert_array_less(tf['z'], 2 + tol)  # check within height limit
Пример #6
0
def test_setup_as_penalty_none():
    driver = SimpleGADriver()
    tf = TopFarmProblem(dict(zip('xy', initial.T)),
                        DummyCost(desired),
                        driver=driver)

    # check that it does not fail if xy and z is not specified
    assert tf.evaluate()[0] == 121
    assert tf.evaluate({
        'x': [2.5, 7, 4.5],
        'y': [-3., -7., -3.],
        'z': [0., 0., 0.]
    })[0] == .5
Пример #7
0
def test_setup_as_penalty_xy():
    driver = SimpleGADriver()
    tf = TopFarmProblem(dict(zip('xy', initial.T)),
                        DummyCost(desired),
                        constraints=[XYBoundaryConstraint(boundary)],
                        driver=driver)

    # check normal result if boundary constraint is satisfied
    assert tf.evaluate()[0] == 121
    # check penalized result if boundary constraint is not satisfied
    assert tf.evaluate({
        'x': [2.5, 7, 4.5],
        'y': [-3., -7., -3.],
        'z': [0., 0., 0.]
    })[0] == 1e10 + 1
def main():
    if __name__ == '__main__':
        plot_comp = XYPlotComp()
        site = get_site()
        n_wt = len(site.initial_position)
        windTurbines = DTU10MW()
        min_spacing = 2 * windTurbines.diameter(0)
        windFarmModel = IEA37SimpleBastankhahGaussian(site, windTurbines)
        Drotor_vector = [windTurbines.diameter()] * n_wt
        power_rated_vector = [float(windTurbines.power(20) / 1000)] * n_wt
        hub_height_vector = [windTurbines.hub_height()] * n_wt

        def aep_func(x, y, **_):
            sim_res = windFarmModel(x, y)
            aep = sim_res.aep()
            return aep.sum(['wd', 'ws']).values * 10**6

        def irr_func(aep, **_):
            return economic_evaluation(Drotor_vector, power_rated_vector,
                                       hub_height_vector, aep).calculate_irr()

        aep_comp = CostModelComponent(input_keys=['x', 'y'],
                                      n_wt=n_wt,
                                      cost_function=aep_func,
                                      output_key="aep",
                                      output_unit="GWh",
                                      objective=False,
                                      output_val=np.zeros(n_wt))
        irr_comp = CostModelComponent(input_keys=['aep'],
                                      n_wt=n_wt,
                                      cost_function=irr_func,
                                      output_key="irr",
                                      output_unit="%",
                                      objective=True,
                                      income_model=True)
        group = TopFarmGroup([aep_comp, irr_comp])
        problem = TopFarmProblem(
            design_vars=dict(zip('xy', site.initial_position.T)),
            cost_comp=group,
            driver=EasyRandomSearchDriver(
                randomize_func=RandomizeTurbinePosition_Circle(), max_iter=10),
            constraints=[
                SpacingConstraint(min_spacing),
                XYBoundaryConstraint(site.boundary),
            ],
            plot_comp=plot_comp)
        cost, state, recorder = problem.optimize()
        problem.plot_comp.show()
Пример #9
0
def test_2level_turbineType_and_XYZ_optimization():
    design_vars = {k: v for k, v in zip('xy', optimal.T)}
    design_vars['z'] = (optimal[:, 2], 0, 4)
    xyz_problem = TopFarmProblem(design_vars,
                                 cost_comp=DummyCost(optimal,
                                                     ['x', 'y', 'z', 'type']),
                                 constraints=[
                                     SpacingConstraint(2),
                                     XYBoundaryConstraint([(0, 0), (4, 4)],
                                                          'square')
                                 ],
                                 driver=EasyScipyOptimizeDriver(disp=False))
    tf = TopFarmProblem({'type': ([0, 0], 0, 1)},
                        cost_comp=xyz_problem,
                        driver=DOEDriver(FullFactorialGenerator(2)))
    cost = tf.optimize()[0]
    assert cost == 0
Пример #10
0
def get_tf(cost_comp):
    return TopFarmProblem(dict(zip('xy', initial.T)),
                          cost_comp=cost_comp,
                          constraints=[
                              SpacingConstraint(min_spacing),
                              XYBoundaryConstraint(boundary)
                          ],
                          driver=EasyScipyOptimizeDriver(disp=False))
Пример #11
0
    def _topfarm_obj(gradients, cost_comp=None, **kwargs):

        return TopFarmProblem(
            {'x': initial[:, 0], 'y': initial[:, 1]},
            cost_comp=cost_comp or CostModelComponent(['x', 'y'], 4, cost, gradients),
            constraints=[SpacingConstraint(2), XYBoundaryConstraint(boundary)],
            driver=EasyScipyOptimizeDriver(),
            **kwargs)
Пример #12
0
def test_setup_as_constraint_xy():
    # plot_comp = DummyCostPlotComp(desired)
    plot_comp = NoPlot()

    tf = TopFarmProblem({
        'x': initial[:, 0],
        'y': initial[:, 1]
    },
                        DummyCost(desired[:, :2]),
                        constraints=[XYBoundaryConstraint(boundary)],
                        driver=EasyScipyOptimizeDriver(disp=False),
                        plot_comp=plot_comp)

    tf.optimize()
    tb_pos = tf.turbine_positions[:, :2]
    tf.plot_comp.show()
    tol = 1e-4
    assert tb_pos[1][0] < 6 + tol  # check within border
Пример #13
0
def get_InitialXYZOptimizationProblem(driver):
    return TopFarmProblem(
        {
            'x': [0, 2],
            'y': [0, 2],
            'z': ([0, 2], 3, 4)
        },
        cost_comp=DummyCost([(1, 0, 4), (0, 1, 3)], 'xyz'),
        constraints=[XYBoundaryConstraint([(10, 6), (11, 8)], 'rectangle')],
        driver=driver)
Пример #14
0
def test_smart_start_aep_map_PyWakeAEP():
    site = IEA37Site(16)
    n_wt = 4

    x, y = site.initial_position[:n_wt].T
    wd_lst = np.arange(0, 360, 45)
    ws_lst = [10]
    turbines = hornsrev1.HornsrevV80()
    site = UniformSite([1], .75)
    site.default_ws = ws_lst
    site.default_wd = wd_lst

    aep = PyWakeAEP(wake_model=NOJ(site, turbines))
    aep_1wt = aep.calculate_AEP([0], [0]).sum()

    tf = TopFarmProblem(design_vars={
        'x': x,
        'y': y
    },
                        cost_comp=aep.get_TopFarm_cost_component(n_wt),
                        driver=EasyScipyOptimizeDriver(),
                        constraints=[
                            SpacingConstraint(160),
                            CircleBoundaryConstraint((0, 0), 500)
                        ])
    x = np.arange(-500, 500, 10)
    y = np.arange(-500, 500, 10)
    XX, YY = np.meshgrid(x, y)

    tf.smart_start(XX,
                   YY,
                   aep.get_aep4smart_start(wd=wd_lst, ws=ws_lst),
                   radius=40,
                   seed=1)
    tf.evaluate()

    if 0:
        wt_x, wt_y = tf['x'], tf['y']
        for i, _ in enumerate(wt_x, 1):
            print(aep.calculate_AEP(wt_x[:i], wt_y[:i]).sum((1, 2)))
        X_j, Y_j, aep_map = aep.aep_map(x,
                                        y,
                                        0,
                                        wt_x,
                                        wt_y,
                                        ws=ws_lst,
                                        wd=wd_lst)
        print(tf.evaluate())
        import matplotlib.pyplot as plt
        c = plt.contourf(X_j, Y_j, aep_map, 100)
        plt.colorbar(c)
        plt.plot(wt_x, wt_y, '2r')
        for c in tf.model.constraint_components:
            c.plot()
        plt.axis('equal')
        plt.show()
    npt.assert_almost_equal(aep_1wt * n_wt, tf['AEP'], 5)
def test_AEPMaxLoadCostModelComponent_constraint():

    tf = TopFarmProblem(
        design_vars={
            'x': ([1]),
            'y': (.1, 0, 2.5)
        },
        # design_vars={'x': ([2.9], [1], [3])},
        cost_comp=AEPMaxLoadCostModelComponent(input_keys='xy',
                                               n_wt=1,
                                               aep_load_function=lambda x, y:
                                               (np.hypot(x, y), x),
                                               max_loads=3),
        constraints=[CircleBoundaryConstraint((0, 0), 7)],
    )

    tf.evaluate()
    cost, state, recorder = tf.optimize()
    npt.assert_allclose(state['x'], 3)  # constrained by max_loads
    npt.assert_allclose(state['y'], 2.5)  # constrained by design var lim
Пример #16
0
def testCostModelComponentDiffShapeInput():
    def aep_cost(x, y, h):
        opt_x, opt_y = optimal.T
        return -np.sum((x - opt_x)**2 + (y - opt_y)**2) + h, {
            'add_out': sum(x)
        }

    cost_comp = AEPCostModelComponent(['x', 'y', ('h', 0)],
                                      4,
                                      aep_cost,
                                      additional_output=[('add_out', 0)])
    tf = TopFarmProblem(dict(zip('xy', initial.T)),
                        cost_comp=cost_comp,
                        constraints=[
                            SpacingConstraint(min_spacing),
                            XYBoundaryConstraint(boundary)
                        ],
                        driver=EasyScipyOptimizeDriver(disp=False),
                        ext_vars={'h': 0})
    cost0, _, _ = tf.optimize(state={'h': 0})
    cost10, _, _ = tf.optimize(state={'h': 10})
    npt.assert_almost_equal(cost10, cost0 - 10)
Пример #17
0
def test_smart_start_aep_map(seed, radius, resolution, tol):
    site = IEA37Site(16)
    n_wt = 4
    x, y = site.initial_position[:n_wt].T
    wd_lst = np.arange(0, 360, 45)
    ws_lst = [10]
    turbines = hornsrev1.HornsrevV80()
    site = UniformSite([1], .75)
    site.default_ws = ws_lst
    site.default_wd = wd_lst
    wfm = NOJ(site, turbines)
    aep_comp = PyWakeAEPCostModelComponent(wfm, n_wt=n_wt)
    aep_1wt = wfm([0], [0]).aep().sum()

    tf = TopFarmProblem(design_vars={
        'x': x,
        'y': y
    },
                        cost_comp=aep_comp,
                        driver=EasyScipyOptimizeDriver(),
                        constraints=[
                            SpacingConstraint(160),
                            CircleBoundaryConstraint((0, 0), radius)
                        ])
    x = np.arange(-radius, radius, resolution)
    y = np.arange(-radius, radius, resolution)
    XX, YY = np.meshgrid(x, y)

    tf.smart_start(XX,
                   YY,
                   aep_comp.get_aep4smart_start(wd=wd_lst, ws=ws_lst),
                   radius=40,
                   plot=0,
                   seed=seed)
    tf.evaluate()

    if 0:
        wt_x, wt_y = tf['x'], tf['y']
        for i, _ in enumerate(wt_x, 1):
            print(wfm(wt_x[:i], wt_y[:i]).aep().sum(['wd', 'ws']))
        aep_comp.windFarmModel(wt_x, wt_y, ws=ws_lst,
                               wd=wd_lst).flow_map().aep_xy().plot()
        print(tf.evaluate())
        import matplotlib.pyplot as plt
        plt.plot(wt_x, wt_y, '2r')
        for c in tf.model.constraint_components:
            c.plot()
        plt.axis('equal')
        plt.show()
    npt.assert_almost_equal(aep_1wt * n_wt, tf['AEP'], tol)
Пример #18
0
def turbineTypeOptimizationProblem():
    return TopFarmProblem(
        design_vars={'type': ([0, 0, 0], 0, 2)},
        cost_comp=DummyCost(np.array([[2, 0, 1]]).T, ['type']),
        driver=DOEDriver(FullFactorialGenerator(3)))
def main(obj=False, max_con_on=True):
    if __name__ == '__main__':
        start = time.time()
        try:
            import matplotlib.pyplot as plt
            plt.gcf()
            plot = True
        except RuntimeError:
            plot = False

        # ------ DEFINE WIND TURBINE TYPES, LOCATIONS & STORE METADATA -------
        windTurbines = WindTurbines(
            names=['Ghost_T1', 'T2'],
            diameters=[40, 84],
            hub_heights=[70, hornsrev1.HornsrevV80().hub_height()],
            ct_funcs=[dummy_thrust(ct_rated=0),
                      hornsrev1.HornsrevV80().ct],
            power_funcs=[
                cube_power(power_rated=0),
                cube_power(power_rated=3000)
            ],
            # hornsrev1.HornsrevV80()._power],
            power_unit='kW')
        Drotor_vector = windTurbines._diameters
        power_rated_vec = np.array(
            [pcurv(25) / 1000 for pcurv in windTurbines._power_funcs])
        hub_height_vector = windTurbines._hub_heights

        x, y = np.meshgrid(range(-840, 840, 420), range(-840, 840, 420))
        n_wt = len(x.flatten())
        # initial turbine positions and other independent variables
        ext_vars = {'x': x.flatten(), 'y': y.flatten(), 'obj': obj * 1}

        capconst = []
        if max_con_on:
            capconst = [
                CapacityConstraint(max_capacity=30.01,
                                   rated_power_array=power_rated_vec)
            ]

        # ---------------- DEFINE SITE & SELECT WAKE MODEL -------------------
    #        site = UniformWeibullSite(p_wd=[50, 50], a=[9, 9], k=[2.3, 2.3], ti=.1, alpha=0, h_ref=100)
        site = UniformWeibullSite(p_wd=[100], a=[9], k=[2.3], ti=.1)
        site.default_ws = [9]  # reduce the number of calculations
        site.default_wd = [0]  # reduce the number of calculations

        wake_model = NOJ(site, windTurbines)

        AEPCalc = AEPCalculator(wake_model)

        # ------------- OUTPUTS AEP PER TURBINE & FARM IRR -------------------
        def aep_func(x, y, type, obj, **kwargs
                     ):  # TODO fix type as input change to topfarm turbinetype
            out = AEPCalc.calculate_AEP(x_i=x, y_i=y,
                                        type_i=type.astype(int)).sum((1, 2))
            if obj:  # if objective is AEP; output the total Farm_AEP
                out = np.sum(out)
            return out * 10**6

        def irr_func(aep, type, **kwargs):
            idx = type.astype(int)
            return economic_evaluation(Drotor_vector[idx],
                                       power_rated_vec[idx],
                                       hub_height_vector[idx],
                                       aep).calculate_irr()

        # ----- WRAP AEP AND IRR INTO TOPFARM COMPONENTS AND THEN GROUP  -----
        aep_comp = CostModelComponent(input_keys=[
            topfarm.x_key, topfarm.y_key, topfarm.type_key, ('obj', obj)
        ],
                                      n_wt=n_wt,
                                      cost_function=aep_func,
                                      output_key="aep",
                                      output_unit="GWh",
                                      objective=obj,
                                      output_val=np.zeros(n_wt),
                                      income_model=True)
        comps = [aep_comp]  # AEP component is always in the group
        if not obj:  # if objective is IRR initiate/add irr_comp
            irr_comp = CostModelComponent(input_keys=[topfarm.type_key, 'aep'],
                                          n_wt=n_wt,
                                          cost_function=irr_func,
                                          output_key="irr",
                                          output_unit="%",
                                          objective=True)
            comps.append(irr_comp)

        group = TopFarmGroup(comps)

        # - INITIATE THE PROBLEM WITH ONLY TURBINE TYPE AS DESIGN VARIABLES -
        tf = TopFarmProblem(
            design_vars={
                topfarm.type_key: ([0] * n_wt, 0, len(windTurbines._names) - 1)
            },
            cost_comp=group,
            driver=EasyRandomSearchDriver(randomize_func=RandomizeAllUniform(
                [topfarm.type_key]),
                                          max_iter=1),
            # driver=EasySimpleGADriver(max_gen=2, random_state=1),
            constraints=capconst,
            # plot_comp=TurbineTypePlotComponent(windTurbines._names),
            plot_comp=NoPlot(),
            ext_vars=ext_vars)

        cost, state, rec = tf.optimize()
        # view_model(problem, outfile='ex5_n2.html', show_browser=False)
        end = time.time()
        print(end - start)
        # %%
        # ------------------- OPTIONAL VISUALIZATION OF WAKES ----------------
        post_visual, save = False, False
        if post_visual:
            #        import matplotlib.pyplot as plt
            for cou, (i, j, k, co, ae) in enumerate(
                    zip(rec['x'], rec['y'], rec['type'], rec['cost'],
                        rec['aep'])):
                AEPCalc.calculate_AEP(x_i=i, y_i=j, type_i=k)
                AEPCalc.plot_wake_map(wt_x=i,
                                      wt_y=j,
                                      wt_type=k,
                                      wd=site.default_wd[0],
                                      ws=site.default_ws[0],
                                      levels=np.arange(2.5, 12, .1))
                windTurbines.plot(i, j, types=k)
                title = f'IRR: {-np.round(co,2)} %, AEP :  {round(np.sum(ae))} GWh, '
                if "totalcapacity" in rec.keys():
                    title += f'Total Capacity: {rec["totalcapacity"][cou]} MW'
                plt.title(title)
                if save:
                    plt.savefig(
                        r'..\..\..\ima2\obj_AEP_{}_MaxConstraint_{}_{}.png'.
                        format(obj, max_con_on, cou))
                plt.show()
Пример #20
0
cost_comp = CostModelComponent(input_keys=[('x', x_init), ('y', y_init)],
                               n_wt=n_wt,
                               cost_function=aep_func,
                               objective=True,
                               maximize=True,
                               output_keys=[('AEP', 0),
                                            ('water_depth', np.zeros(n_wt))])
problem = TopFarmProblem(
    design_vars={
        'x': x_init,
        'y': y_init
    },
    constraints=[
        XYBoundaryConstraint(boundary),
        SpacingConstraint(min_spacing)
    ],
    post_constraints=[('water_depth', {
        'lower': np.ones(n_wt) * maximum_water_depth
    })],
    cost_comp=cost_comp,
    driver=EasyScipyOptimizeDriver(optimizer='SLSQP', maxiter=maxiter,
                                   tol=tol),
    # driver=EasyRandomSearchDriver(RandomizeTurbinePosition()),
    plot_comp=XYPlotComp(),
    expected_cost=ec)

if 1:
    tic = time.time()
    cost, state, recorder = problem.optimize()
    toc = time.time()
    print('Optimization took: {:.0f}s'.format(toc - tic))
Пример #21
0
                                         aep_load_function=aep_load_func,
                                         aep_load_gradient=aep_load_gradient,
                                         max_loads=max_loads,
                                         objective=True,
                                         output_keys=[('AEP', 0),
                                                      ('loads', np.zeros(
                                                          (s, i)))])
yaw_init = np.zeros((i, l, k))
yaw_30 = np.full_like(yaw_init, 30)
yaw_init_rand = np.random.rand(i, l, k) * 80 - 40
tol = 1e-8
ec = 1e-4
problem = TopFarmProblem(design_vars={'yaw_ilk': (yaw_init, yaw_min, yaw_max)},
                         cost_comp=cost_comp,
                         driver=EasyScipyOptimizeDriver(optimizer='SLSQP',
                                                        maxiter=maxiter,
                                                        tol=tol),
                         plot_comp=NoPlot(),
                         expected_cost=ec)
tic = time.time()
if 1:
    cost, state, recorder = problem.optimize()

toc = time.time()
print('Optimization took: {:.0f}s'.format(toc - tic))
if 0:
    with open(f'./check_partials_{int(toc)}.txt', 'w') as fid:
        partials = problem.check_partials(out_stream=fid,
                                          compact_print=True,
                                          show_only_incorrect=False,
                                          step=step)
    # aep_load_gradient = aep_load_gradient,
    max_loads=max_loads,
    objective=True,
    step={
        'x': step,
        'y': step
    },
    output_keys=[('AEP', 0), ('loads', np.zeros((s, i)))])
problem = TopFarmProblem(
    design_vars={
        'x': x_init,
        'y': y_init
    },
    constraints=[
        XYBoundaryConstraint(boundary),
        SpacingConstraint(min_spacing)
    ],
    # post_constraints=[(ls, val * load_fact) for ls, val in loads_nom.items()],
    cost_comp=cost_comp,
    driver=EasyScipyOptimizeDriver(optimizer='SLSQP', maxiter=maxiter,
                                   tol=tol),
    plot_comp=NoPlot(),
    expected_cost=ec)
tic = time.time()
if 1:
    cost, state, recorder = problem.optimize()

toc = time.time()
print('Optimization took: {:.0f}s'.format(toc - tic))
if 0:
    with open(f'./check_partials_{int(toc)}_{ec}_{step}.txt', 'w') as fid:
Пример #23
0
def main():
    if __name__ == '__main__':
        # ------------------------ INPUTS ------------------------

        # define the conditions for the wind farm
        boundary = [(0, 0), (6, 0), (6, -10), (0, -10)]  # turbine boundaries
        initial = np.array([[6, 0], [6, -8], [1, 1],
                            [-1, -8]])  # initial turbine pos
        desired = np.array([[3, -3], [7, -7], [4, -3],
                            [3, -7]])  # desired turbine pos
        optimal = np.array([[2.5, -3], [6, -7], [4.5, -3],
                            [3, -7]])  # optimal layout
        min_spacing = 2  # min distance between turbines

        try:
            import matplotlib.pyplot as plt
            plt.gcf()
            plot_comp = DummyCostPlotComp(desired)
            plot = True
        except RuntimeError:
            plot_comp = NoPlot()
            plot = False
        # ------------------------ OPTIMIZATION ------------------------

        # create the wind farm and run the optimization

        tf = TopFarmProblem(design_vars={
            'x': initial[:, 0],
            'y': initial[:, 1]
        },
                            cost_comp=DummyCost(desired, ['x', 'y']),
                            constraints=[
                                XYBoundaryConstraint(boundary),
                                SpacingConstraint(min_spacing)
                            ],
                            plot_comp=plot_comp,
                            driver=EasyScipyOptimizeDriver())
        cost, state, recorder = tf.optimize()
        tf.plot_comp.show()

        # final position
        final_x, final_y = state['x'], state['y']

        # get the positions tried during optimization from the recorder
        rec_x, rec_y = recorder['x'], recorder['y']

        # get the final, optimal positions
        optimized = tf.turbine_positions

        # ------------------------ PLOT (if possible) ------------------------

        if plot:

            # initialize the figure and axes
            fig = plt.figure(1, figsize=(7, 5))
            plt.clf()
            ax = plt.axes()

            # plot the boundary and desired locations
            ax.add_patch(
                Polygon(boundary, closed=True, fill=False,
                        label='Boundary'))  # boundary
            plt.plot(desired[:, 0],
                     desired[:, 1],
                     'ok',
                     mfc='None',
                     ms=10,
                     label='Desired')  # desired positions

            # plot the history of each turbine
            for i_turb in range(rec_x.shape[1]):
                l, = plt.plot(rec_x[0, i_turb],
                              rec_y[0, i_turb],
                              'x',
                              ms=8,
                              label=f'Turbine {i_turb+1}')  # initial
                plt.plot(rec_x[:, i_turb], rec_y[:, i_turb],
                         c=l.get_color())  # tested values
                plt.plot(rec_x[-1, i_turb],
                         rec_y[-1, i_turb],
                         'o',
                         ms=8,
                         c=l.get_color())  # final

            # make a few adjustments to the plot
            ax.autoscale_view()  # autoscale the boundary
            plt.legend(bbox_to_anchor=(0., 1.02, 1., .102),
                       loc=3,
                       ncol=4,
                       mode='expand',
                       borderaxespad=0.)  # add a legend
            plt.tight_layout()  # zoom the plot in
            plt.axis('off')  # remove the axis

            # save the png
            folder, file = os.path.split(__file__)
            fig.savefig(folder + "/figures/" + file.replace('.py', '.png'))
Пример #24
0
                def setup_prob(differentiable):

                    #####################################
                    ## Setup Floris run with gradients ##
                    #####################################
                    topfarm.x_key = 'turbineX'
                    topfarm.y_key = 'turbineY'
                    turbineX = np.array(
                        [1164.7, 947.2, 1682.4, 1464.9, 1982.6, 2200.1])
                    turbineY = np.array(
                        [1024.7, 1335.3, 1387.2, 1697.8, 2060.3, 1749.7])
                    f = np.array([
                        3.597152, 3.948682, 5.167395, 7.000154, 8.364547,
                        6.43485, 8.643194, 11.77051, 15.15757, 14.73792,
                        10.01205, 5.165975
                    ])
                    wind_speed = 8
                    site = Amalia1Site(f, mean_wsp=wind_speed)
                    site.initial_position = np.array([turbineX, turbineY]).T
                    wt = NREL5MWREF()
                    wake_model = NOJ(site, wt)
                    aep_calculator = AEPCalculator(wake_model)
                    n_wt = len(turbineX)
                    differentiable = differentiable
                    wake_model_options = {
                        'nSamples': 0,
                        'nRotorPoints': 1,
                        'use_ct_curve': True,
                        'ct_curve': ct_curve,
                        'interp_type': 1,
                        'differentiable': differentiable,
                        'use_rotor_components': False
                    }

                    aep_comp = AEPGroup(
                        n_wt,
                        differentiable=differentiable,
                        use_rotor_components=False,
                        wake_model=floris_wrapper,
                        params_IdepVar_func=add_floris_params_IndepVarComps,
                        wake_model_options=wake_model_options,
                        datasize=len(power_curve),
                        nDirections=len(f),
                        cp_points=len(power_curve))  # , cp_curve_spline=None)

                    def cost_func(AEP, **kwargs):
                        return AEP

                    cost_comp = CostModelComponent(input_keys=[('AEP', [0])],
                                                   n_wt=n_wt,
                                                   cost_function=cost_func,
                                                   output_key="aep",
                                                   output_unit="kWh",
                                                   objective=True,
                                                   income_model=True,
                                                   input_units=['kW*h'])
                    group = TopFarmGroup([aep_comp, cost_comp])
                    boundary = np.array([(900, 1000), (2300, 1000),
                                         (2300, 2100),
                                         (900, 2100)])  # turbine boundaries
                    prob = TopFarmProblem(
                        design_vars={
                            'turbineX': (turbineX, 'm'),
                            'turbineY': (turbineY, 'm')
                        },
                        cost_comp=group,
                        driver=EasyRandomSearchDriver(
                            randomize_func=RandomizeTurbinePosition_Square(),
                            max_iter=500),
                        #                        driver=EasyScipyOptimizeDriver(optimizer='SLSQP',tol=10**-12),
                        #                        driver=EasyScipyOptimizeDriver(optimizer='COBYLA'),
                        constraints=[
                            SpacingConstraint(200, units='m'),
                            XYBoundaryConstraint(boundary, units='m')
                        ],
                        plot_comp=plot_comp,
                        expected_cost=-100e2,
                    )
                    turbineZ = np.array([90.0, 100.0, 90.0, 80.0, 70.0, 90.0])
                    air_density = 1.1716  # kg/m^3
                    rotorDiameter = np.zeros(n_wt)
                    hubHeight = np.zeros(n_wt)
                    axialInduction = np.zeros(n_wt)
                    generatorEfficiency = np.zeros(n_wt)
                    yaw = np.zeros(n_wt)
                    for turbI in range(0, n_wt):
                        rotorDiameter[turbI] = wt.diameter()  # m
                        hubHeight[turbI] = wt.hub_height()  # m
                        axialInduction[turbI] = 1.0 / 3.0
                        generatorEfficiency[turbI] = 1.0  # 0.944
                        yaw[turbI] = 0.  # deg.
                    prob['turbineX'] = turbineX
                    prob['turbineY'] = turbineY
                    prob['hubHeight'] = turbineZ
                    prob['yaw0'] = yaw
                    prob['rotorDiameter'] = rotorDiameter
                    prob['hubHeight'] = hubHeight
                    prob['axialInduction'] = axialInduction
                    prob['generatorEfficiency'] = generatorEfficiency
                    prob['windSpeeds'] = np.ones(len(f)) * wind_speed
                    prob['air_density'] = air_density

                    prob['windDirections'] = np.arange(0, 360, 360 / len(f))
                    prob['windFrequencies'] = f / 100
                    # turns off cosine spread (just needs to be very large)
                    prob['model_params:cos_spread'] = 1E12
                    prob['model_params:shearExp'] = 0.25
                    prob['model_params:z_ref'] = 80.
                    prob['model_params:z0'] = 0.
                    prob['rated_power'] = np.ones(n_wt) * 5000.
                    prob['cut_in_speed'] = np.ones(n_wt) * 3
                    prob['cp_curve_wind_speed'] = cp_curve[:, 0]
                    prob['cp_curve_cp'] = cp_curve[:, 1]
                    prob['rated_wind_speed'] = np.ones(n_wt) * 11.4
                    prob['cut_out_speed'] = np.ones(n_wt) * 25.0
                    # if 0:
                    # prob.check_partials(compact_print=True,includes='*direction_group0*')
                    # else:
                    return prob
def main():
    if __name__ == '__main__':
        try:
            import matplotlib.pyplot as plt
            plt.gcf()
            plot_comp = XYPlotComp()
            plot = True
        except RuntimeError:
            plot_comp = NoPlot()
            plot = False

        n_wt = 16
        site = IEA37Site(n_wt)
        windTurbines = IEA37_WindTurbines()
        windFarmModel = IEA37SimpleBastankhahGaussian(site, windTurbines)
        Drotor_vector = [windTurbines.diameter()] * n_wt
        power_rated_vector = [float(windTurbines.power(20)) * 1e-6] * n_wt
        hub_height_vector = [windTurbines.hub_height()] * n_wt
        distance_from_shore = 10         # [km]
        energy_price = 0.1              # [Euro/kWh] What we get per kWh
        project_duration = 20            # [years]
        rated_rpm_array = [12] * n_wt    # [rpm]
        water_depth_array = [15] * n_wt  # [m]

        eco_eval = economic_evaluation(distance_from_shore, energy_price, project_duration)

        def irr_func(aep, **kwargs):
            eco_eval.calculate_irr(
                rated_rpm_array,
                Drotor_vector,
                power_rated_vector,
                hub_height_vector,
                water_depth_array,
                aep)
            print(eco_eval.IRR)
            return eco_eval.IRR

        aep_comp = CostModelComponent(
            input_keys=['x', 'y'],
            n_wt=n_wt,
            cost_function=lambda x, y, **_: windFarmModel(x=x, y=y).aep().sum(['wd', 'ws']) * 10**6,
            output_key="aep",
            output_unit="kWh",
            objective=False,
            output_val=np.zeros(n_wt))
        irr_comp = CostModelComponent(
            input_keys=['aep'],
            n_wt=n_wt,
            cost_function=irr_func,
            output_key="irr",
            output_unit="%",
            objective=True,
            income_model=True)
        group = TopFarmGroup([aep_comp, irr_comp])
        problem = TopFarmProblem(
            design_vars=dict(zip('xy', site.initial_position.T)),
            cost_comp=group,
            driver=EasyRandomSearchDriver(randomize_func=RandomizeTurbinePosition_Circle(), max_iter=5),
            constraints=[SpacingConstraint(200),
                         CircleBoundaryConstraint([0, 0], 1300.1)],
            plot_comp=plot_comp)
        cost, state, recorder = problem.optimize()