def test_constraint_params(acceleration_pc_data):
    """ Test constraint satisfaction with cvxpy.
    """
    data, constraint = acceleration_pc_data
    path, ss, alim = data

    # An user of the class
    a, b, c, F, g, ubound, xbound = constraint.compute_constraint_params(
        path, ss, 1.0)
    assert xbound is None

    N = ss.shape[0] - 1
    dof = path.dof

    ps = path.evald(ss)
    pss = path.evaldd(ss)

    F_actual = np.vstack((np.eye(dof), -np.eye(dof)))
    g_actual = np.hstack((alim[:, 1], -alim[:, 0]))

    npt.assert_allclose(F, F_actual)
    npt.assert_allclose(g, g_actual)
    for i in range(0, N + 1):
        npt.assert_allclose(a[i], ps[i])
        npt.assert_allclose(b[i], pss[i])
        npt.assert_allclose(c[i], np.zeros_like(ps[i]))
        assert ubound is None
        assert xbound is None
Пример #2
0
def test_jnt_vel_varying_basic():
    # constraint
    ss_wpts = np.r_[0, 1, 2]
    vlim_wpts = [[[-1, 2], [-1, 2]], [[-2, 3], [-2, 3]], [[-1, 0], [-1, 0]]]
    vlim_spl = CubicSpline(ss_wpts, vlim_wpts)
    constraint = ta.constraint.JointVelocityConstraintVarying(vlim_spl)
    # path
    coeff = [[1., 2, 3], [-2., -3., 4., 5.]]
    path = ta.PolynomialPath(coeff)
    gridpoints = np.linspace(0, 2, 10)
    _, _, _, _, _, _, xlimit = constraint.compute_constraint_params(
        path, gridpoints, 1.0)
    # constraint splines
    qs = path(gridpoints, 1)
    # test
    sd = cvx.Variable()
    for i in range(ss_wpts.shape[0]):
        vlim = vlim_spl(gridpoints[i])

        # 2. compute max sd from the data
        constraints = [
            qs[i] * sd <= vlim[:, 1], qs[i] * sd >= vlim[:, 0], sd >= 0,
            sd <= JVEL_MAXSD
        ]

        try:
            prob = cvx.Problem(cvx.Maximize(sd), constraints)
            prob.solve(solver=cvx.ECOS, abstol=1e-9)
            xmax = sd.value**2

            prob = cvx.Problem(cvx.Minimize(sd), constraints)
            prob.solve(solver=cvx.ECOS, abstol=1e-9)
            xmin = sd.value**2
        except cvx.SolverError:
            continue  # ECOS can't solve this problem.

        # 3. they should agree
        npt.assert_allclose([xmin, xmax], xlimit[i], atol=SMALL)

        # assert non-negativity
        assert xlimit[i, 0] >= 0