Пример #1
0
def is_density(mat: np.ndarray) -> bool:
    """
    Check if matrix is a density matrix.

    A matrix is a density matrix if its trace is equal to one and it has the
    property of being positive semidefinite (PSD).

    References:
        [1] Wikipedia: Density matrix
        https://en.wikipedia.org/wiki/Density_matrix

    :param mat: Matrix to check.
    :return: Return `True` if matrix is a density matrix, and `False`
             otherwise.
    """
    return is_psd(mat) and np.isclose(np.trace(mat), 1)
Пример #2
0
def is_ppt(mat: np.ndarray,
           sys: int = 2,
           dim: Union[int, List[int]] = None,
           tol: float = None) -> bool:
    """
    Determine whether or not a matrix has positive partial transpose.

    Yields either `True` or `False`, indicating that `mat` does or does not
    have positive partial transpose (within numerical error). The variable
    `mat` is assumed to act on bipartite space.

    For shared systems of 2 ⊗ 2 or 2 ⊗ 3, the PPT criterion serves as a method
    to determine whether a given state is entangled or separable. Therefore, for
    systems of this size, the return value "True" would indicate that the state
    is separable and a value of "False" would indicate the state is entangled.

    References:
        [1] Quantiki: Positive partial transpose
        https://www.quantiki.org/wiki/positive-partial-transpose

    :param mat: A square matrix.
    :param sys: Scalar or vector indicating which subsystems the transpose
                should be applied on.
    :param dim: The dimension is a vector containing the dimensions of the
                subsystems on which `mat` acts.
    :param tol: Tolerance with which to check whether `mat` is PPT.
    :return: True if `mat` is PPT and False if not.
    """
    eps = np.finfo(float).eps

    sqrt_rho_dims = np.round(np.sqrt(list(mat.shape)))

    if dim is None:
        dim = np.array([[sqrt_rho_dims[0], sqrt_rho_dims[0]],
                        [sqrt_rho_dims[1], sqrt_rho_dims[1]]])
    if tol is None:
        tol = np.sqrt(eps)
    return is_psd(partial_transpose(mat, sys, dim), tol)
Пример #3
0
def is_projection(mat: np.ndarray) -> bool:
    r"""
    Check if matrix is a projection matrix.

    A matrix is a projection matrix if it is positive semidefinite (PSD) and if

    .. math::
        \begin{equation}
            X^2 = X
        \end{equation}

    where :math:`X` is the matrix in question.

    References:
        [1] Wikipedia: Projection matrix.
        https://en.wikipedia.org/wiki/Projection_matrix

    :param mat: Matrix to check.
    :return: Return True if matrix is a projection matrix, and False otherwise.
    """
    if not is_psd(mat):
        return False
    return np.allclose(np.linalg.matrix_power(mat, 2), mat)
Пример #4
0
def is_povm(mat_list: List[np.ndarray]) -> bool:
    r"""
    Determine if a list of matrices constitute a valid set of POVMs.

    A valid set of measurements are defined by a set of positive semidefinite
    operators

    .. math::
         \{P_a : a \in \Gamma\} \subset \text{Pos}(\mathcal{X})

    indexed by the alphabet :math:`\Gamma` of measurement outcomes satisfying
    the constraint that

    .. math::
        \sum_{a \in \Gamma} P_a = I_{\mathcal{X}}.

    References:
        [1] Wikipedia: POVM
        https://en.wikipedia.org/wiki/POVM

    :param mat_list: A list of matrices.
    :return: True if set of matrices constitutes a set of measurements, and
             False otherwise.
    """
    dim = mat_list[0].shape[0]

    mat_sum = np.zeros((dim, dim), dtype=complex)
    for mat in mat_list:
        # Each measurement in the set must be positive semidefinite.
        if not is_psd(mat):
            return False
        mat_sum += mat
    # Summing all the measurements from the set must be equal to the identity.
    if not np.allclose(np.identity(dim), mat_sum):
        return False
    return True
Пример #5
0
 def test_is_psd(self):
     """Test that positive semidefinite matrix returns True."""
     mat = np.array([[1, -1], [-1, 1]])
     self.assertEqual(is_psd(mat), True)
Пример #6
0
 def test_is_not_psd(self):
     """Test that non-positive semidefinite matrix returns False."""
     mat = np.array([[-1, -1], [-1, -1]])
     self.assertEqual(is_psd(mat), False)