Пример #1
0
def _reduction(
    a: Tensor,
    prim: Callable,
    *,
    has_identity: bool = True,
    accepts_dim_tuple: bool = True,  # to handle min/argmin that accept single dim only
    dims: Optional[DimsType] = None,
    keepdims: bool = False,
    dtype: Optional[torch.dtype] = None,  # should be specified for ops that support it
    out: Optional[Tensor] = None,
    output_dtype_kind: REDUCTION_OUTPUT_TYPE_KIND,
):  # it is usually SAME, but I want
    # ref writers to actually think about what to put here
    assert isinstance(a, TensorLike)
    if out is not None:
        assert isinstance(out, TensorLike)
        if dtype is not None:
            # TODO - this is true for eager mode currently, but it's wrong behavior for complex norms
            if dtype != out.dtype:
                raise RuntimeError(
                    "dtype argument and out dtype must match in reduction"
                )
    if not accepts_dim_tuple:
        assert dims is None or isinstance(dims, int)
    if isinstance(dims, int):
        dims = (dims,)  # type: ignore[assignment]
    dims = utils.reduction_dims(a.shape, dims)
    if not has_identity:
        valid_shape = all(a.shape[i] for i in range(a.ndim) if i in dims)
        if not valid_shape:
            raise RuntimeError(
                "reducing over zero-size dimension for reduction operation without identity"
            )
    # even though some reductions, like amin or amax, don't strictly require type promotion,
    # all the math ops (including comparisons) are still defined only for a computation type,
    # so promotion will still happen. We are doing it explicitly here
    inp_dtype = dtype if dtype is not None else a.dtype
    computation_dtype = utils._get_computation_dtype(inp_dtype)
    a_converted = prims.convert_element_type(a, computation_dtype)
    result = prim(a_converted, dims)

    if keepdims:
        output_shape = [a.shape[i] if i not in dims else 1 for i in range(a.ndim)]
        broadcast_dims = [i for i in range(a.ndim) if i not in dims]
        result = prims.broadcast_in_dim(result, output_shape, broadcast_dims)
    if out is not None:
        if dtype is None:
            if output_dtype_kind == REDUCTION_OUTPUT_TYPE_KIND.SAME:
                if out.dtype != a.dtype:
                    raise RuntimeError("Expected the dtype for input and out to match")
            elif output_dtype_kind == REDUCTION_OUTPUT_TYPE_KIND.ALWAYS_BOOL:
                if out.dtype != torch.bool:
                    raise RuntimeError("Expected the dtype for input and out to match")
        out = _maybe_resize_out(out, result.shape)
        return copy_to(out, result, allow_cross_device=False)  # type: ignore[arg-type]

    if output_dtype_kind == REDUCTION_OUTPUT_TYPE_KIND.SAME:
        result_dtype = dtype if dtype else a.dtype
        result = prims.convert_element_type(result, result_dtype)
    return result
Пример #2
0
def meta_var_mean_correction(self, dim, *, correction, keepdim=False):
    dim = utils.reduction_dims(self.shape, dim)
    if keepdim:
        output_shape = tuple(self.shape[i] if i not in dim else 1 for i in range(self.ndim))
    else:
        output_shape = utils.compute_reduction_output_shape(self.shape, dim)
    result1 = self.new_empty(output_shape, dtype=toRealValueType(self.dtype))
    result2 = self.new_empty(output_shape)
    return result1, result2
Пример #3
0
def meta_nanmedian_dim(input, dim=-1, keepdim=False):
    dim = utils.reduction_dims(input.shape, (dim,))
    output_shape = _compute_reduction_shape(input, dim, keepdim)
    return input.new_empty(output_shape), input.new_empty(
        output_shape, dtype=torch.long
    )
Пример #4
0
def meta_nansum(input, dims=None, keepdim=False, *, dtype=None):
    output_dtype = _get_reduction_dtype(input, dtype, promote_int_to_long=True)
    dims = utils.reduction_dims(input.shape, dims)
    output_shape = _compute_reduction_shape(input, dims, keepdim)
    return input.new_empty(output_shape, dtype=output_dtype)
Пример #5
0
def meta_var_mean_correction(self, dim, *, correction, keepdim=False):
    dim = utils.reduction_dims(self.shape, dim)
    output_shape = _compute_reduction_shape(self, dim, keepdim)
    result1 = self.new_empty(output_shape, dtype=toRealValueType(self.dtype))
    result2 = self.new_empty(output_shape)
    return result1, result2