Пример #1
0
def background_logistic(hp:HParams, cfg: Config, q: mp.Queue):
  if cfg.log_wandb:
    wandb.init(project="falr", config=hp.as_dict, group=hp.md5, job_type='background')
  item = q.get()
  while item is not None:
    evaluate_logistic(*item)
    item = q.get()
Пример #2
0
 def evaluate_hypervolume_sparsity_parallel(self, args, candidates, mask,
                                            virtual_ep_objs_batch):
     hv = [0.0 for _ in range(len(candidates))]
     sparsity = [0.0 for _ in range(len(candidates))]
     processes = []
     max_process_num = args.num_tasks * args.num_processes
     queue = Queue()
     for i in range(len(candidates)):
         if mask[i]:
             p = Process(target=update_ep_and_compute_hypervolume_sparsity,
                         args=(i, virtual_ep_objs_batch,
                               candidates[i]['prediction'], queue))
             p.start()
             processes.append(p)
             if len(processes) >= max_process_num:
                 for _ in processes:
                     task_id, hv_res, sparsity_res = queue.get()
                     hv[task_id] = hv_res
                     sparsity[task_id] = sparsity_res
                 processes = []
     for _ in processes:
         task_id, hv_res, sparsity_res = queue.get()
         hv[task_id] = hv_res
         sparsity[task_id] = sparsity_res
     return hv, sparsity
Пример #3
0
def dynamic_power(model, input_shape):
    q = Queue()
    power_return = Queue()
    interval_return = Queue()
    latency_return = Queue()
    input_tensor_queue = Queue()
    model_queue = Queue()

    input_tensor = torch.ones([*input_shape])
    input_tensor_queue.put(input_tensor)

    model.share_memory()

    model_queue.put(model)

    context = torch.multiprocessing.get_context('spawn')

    p_thread = context.Process(target=power_thread,
                               args=(power_return, interval_return, q))
    l_thread = context.Process(target=latency_thread,
                               args=(model_queue, input_tensor_queue,
                                     latency_return, q))

    l_thread.start()
    p_thread.start()

    power_l = list()  # GPU power list
    interval_l = list()  # power interval list
    latency_l = list()  # latency list

    l_thread.join()

    while True:
        if not power_return.empty():
            power_l.append(power_return.get())
        if not interval_return.empty():
            interval_l.append(interval_return.get())
        if not latency_return.empty():
            latency_l.append(latency_return.get())
        if power_return.empty() and interval_return.empty(
        ) and latency_return.empty():
            break

    power_return.close()
    interval_return.close()
    latency_return.close()
    q.close()

    del q
    del power_return
    del latency_return
    del interval_return

    return latency_l, power_l, interval_l
def gather_result(result_queue: mp.Queue,
                  total_video_count: int,
                  model_artifact_name: str,
                  total_len=None):
    fn_results: Dict[str, List[Tuple[int, torch.Tensor]]] = {}
    fns: List[Tuple] = []
    pbar = tqdm(total=total_len, dynamic_ncols=True)
    while True:
        if len(fns) == total_video_count:
            break
        out_, fn_, idx_, done_ = result_queue.get()
        for out, fn, idx, done in zip(out_.clone(), fn_, idx_.clone(),
                                      done_.clone()):
            fn_results.setdefault(fn, list())
            fn_results[fn].append((idx, out.clone()))
            pbar.update(1)
            if done:
                output = [t for _, t in sorted(fn_results.pop(fn))]
                output_path = fn2outfn(fn, model_artifact_name)
                safe_dir(output_path, with_filename=True)
                torch.save(output, output_path)
                fns.append((fn, output_path))
                pbar.set_description(f'Done: {output_path}')
        del out_, fn_, idx_, done_
    pbar.close()
    return fns
Пример #5
0
def heuristic_fn_runner(heuristic_fn_input_queue: Queue,
                        heuristic_fn_output_queues, nnet_dir: str, device,
                        on_gpu: bool, gpu_num: int, env: Environment,
                        all_zeros: bool, clip_zero: bool,
                        batch_size: Optional[int]):
    heuristic_fn = None
    if not all_zeros:
        heuristic_fn = load_heuristic_fn(nnet_dir,
                                         device,
                                         on_gpu,
                                         env.get_nnet_model(),
                                         env,
                                         gpu_num=gpu_num,
                                         clip_zero=clip_zero,
                                         batch_size=batch_size)

    while True:
        proc_id, states_nnet = heuristic_fn_input_queue.get()
        if proc_id is None:
            break

        if all_zeros:
            heuristics = np.zeros(states_nnet[0].shape[0], dtype=np.float)
        else:
            heuristics = heuristic_fn(states_nnet, is_nnet_format=True)

        heuristic_fn_output_queues[proc_id].put(heuristics)

    return heuristic_fn
Пример #6
0
def __detector_process(detector_cfg, recivq: Queue, sendqs, timeout, run_semaphore, pause_event):
    detector = __build_detector_component(detector_cfg)
    logger = get_logger()
    logger.info('create ' + str(detector_cfg['type']))
    try:
        while True:
            if not run_semaphore.value:
                logger.info('通过信号量停止了detector')
                break
            pause_event.wait()
            kwargs = recivq.get(timeout=timeout)
            kwargs = detector(**kwargs)
            # 因为后续可能是backbones也可能是tracker所以使用list来发送
            for sendq in sendqs:
                sendq.put(kwargs, timeout=timeout)
    except KeyboardInterrupt:
        logger.info('user stop the detector process')
    except Empty:
        logger.info('head不再发送数据detector自动释放')
    except Full:
        logger.exception('通向某一条主干或者跟踪器的队列已满')
    # except Exception as e:
    #     logger.exception(e)
    finally:
        logger.info('release the detector source')
        del detector  # 清除探测器对象
        del logger
        torch.cuda.empty_cache()  # 清空GPU缓存,防止出现进程STOP占用显存
        recivq.cancel_join_thread()
        for sendq in sendqs:
            sendq.cancel_join_thread()
            sendq.close()
        recivq.close()
    return
def run_in_process_group(world_size, filename, fn, inputs):
    if torch.distributed.is_initialized():
        torch.distributed.destroy_process_group()
    processes = []
    q = Queue()
    wait_event = Event()

    # run the remaining processes
    # for rank in range(world_size - 1):
    for rank in range(world_size):
        p = Process(
            target=init_and_run_process,
            args=(rank, world_size, filename, fn, inputs[rank], q, wait_event),
        )
        p.start()
        processes.append(p)

    # fetch the results from the queue before joining, the background processes
    # need to be alive if the queue contains tensors. See
    # https://discuss.pytorch.org/t/using-torch-tensor-over-multiprocessing-queue-process-fails/2847/3  # noqa: B950
    results = []
    for _ in range(len(processes)):
        results.append(q.get())

    wait_event.set()

    for p in processes:
        p.join()
    return results
Пример #8
0
def mixup_process_worker_wrapper(q_input: mp.Queue, q_output: mp.Queue,
                                 device: int):
    """
    :param q_input:		input queue
    :param q_output:	output queue
    :param device:		running gpu device
    """
    os.environ["CUDA_VISIBLE_DEVICES"] = f"{device}"
    print(f"Process generated with cuda:{device}")
    device = torch.device(f"cuda:{device}")
    while True:
        # Get and load on gpu
        out, target_reweighted, hidden, args, sc, A_dist, debug = q_input.get()
        out = out.to(device)
        target_reweighted = target_reweighted.to(device)
        sc = sc.to(device)
        A_dist = A_dist.to(device)

        # Run
        out, target_reweighted = mixup_process_worker(out, target_reweighted,
                                                      hidden, args, sc, A_dist,
                                                      debug)
        # To cpu and return
        out = out.cpu()
        target_reweighted = target_reweighted.cpu()
        q_output.put([out, target_reweighted])
Пример #9
0
def loop_test(network,
              device,
              transformer,
              img_q: Queue,
              bbox_q: Queue,
              threshold=0.35):
    scale = None
    print(f"NETWORK IS NONE {type(network)}")
    print("STARTING TO SPIN DETECT LOOP")
    while True:
        print("WAIT")
        image = img_q.get()
        print("RECV")
        if type(image) is str and image == "DONE":
            del image
            break
        print("CHECK")
        boxes = detect_face(image, network, transformer, device, threshold)

        print("SENDING")
        bbox_q.put(boxes)
        print("SENT")
        # DONT FORGET TO CLEANUP
        del image
    img_q.close()
    bbox_q.close()
    print("BYE")
def _run_game(process_id: int, game_factory: GameExecutorFactory,
              network: nn.Module, device: torch.device, request_queue: Queue,
              experience_queue: Queue, batch_size: int, transfer_blocks: int,
              transfer_to_device: bool) -> None:
    exploration_rate = 1.
    game = game_factory.create()
    print('* worker %d started' % process_id)
    while True:
        try:
            if not request_queue.empty():
                request: _RunGameRequest = request_queue.get(block=False)
                if request.do_terminate:
                    print('* game worker %d terminated' % process_id)
                    experience_queue.close()
                    request_queue.close()
                    return
                if request.set_exploration_rate is not None:
                    exploration_rate = request.set_exploration_rate

            block = []
            for _ in range(transfer_blocks):
                eps, exps = game.multi_step(network, device, exploration_rate,
                                            batch_size)
                if transfer_to_device:
                    exps = [
                        e.to_device(device, non_blocking=False) for e in exps
                    ]
                block.append((eps, exps))
            experience_queue.put(block, block=True)
        except Exception as e:
            print('error in worker %d: ' % process_id, e)
Пример #11
0
def self_multiplay(policy):
    q = Queue()
    finq = []
    procs = []
    policy.train(False)
    for i in range(MaxProcessNum):
        fin = Queue()
        t = Process(target=PlayProcess, args=(i, q, fin, policy))
        t.start()
        procs.append(t)
        finq.append(fin)
    for i in range(MaxProcessNum):
        id = finq[i].get()
        print("finish process(%d)" % id)
        sys.stdout.flush()
    try:
        while not q.empty():
            data_buffer.append(q.get(timeout=1))
    except TimeoutError:
        pass
    print('finish Queue get')
    sys.stdout.flush()
    for i in range(len(procs)):
        p = procs[i]
        p.join(timeout=10)
        if p.is_alive():
            print('forcing process(%d) to terminate' % i)
            sys.stdout.flush()
            p.terminate()
    print('finish join')
    sys.stdout.flush()
Пример #12
0
    def _prefetch(in_queue: mp.Queue,
                  out_queue: mp.Queue,
                  batchsize: int,
                  shutdown_event: mp.Event,
                  target_device,
                  waiting_time=5):
        """Continuously prefetches complete trajectories dropped by
        the :py:class:`~.TrajectoryStore` for training.

        As long as shutdown is not set, this method
        pulls :py:attr:`batchsize` trajectories from :py:attr:`in_queue`,
        transforms them into batches using :py:meth:`~_to_batch()`
        and puts them onto the :py:attr:`out_queue`.

        This usually runs as an asynchronous :py:obj:`multiprocessing.Process`.

        Parameters
        ----------
        in_queue: :py:obj:`multiprocessing.Queue`
            A queue that delivers dropped trajectories from :py:class:`~.TrajectoryStore`.
        out_queue: :py:obj:`multiprocessing.Queue`
            A queue that delivers batches to :py:meth:`_loop()`.
        batchsize: `int`
            The number of trajectories that shall be processed into a batch.
        shutdown_event: :py:obj:`multiprocessing.Event`
            An event that breaks this methods internal loop.
        target_device: :py:obj:`torch.device`
            The target device of the batch.
        waiting_time: `float`
            Time the methods loop sleeps between each iteration.
        """

        while not shutdown_event.is_set():
            try:
                trajectories = [
                    in_queue.get(timeout=waiting_time)
                    for _ in range(batchsize)
                ]
            except queue.Empty:
                continue

            batch = Learner._to_batch(trajectories, target_device)
            # delete Tensors after usage to free memory (see torch multiprocessing)
            del trajectories

            try:
                out_queue.put(batch)
            except (AssertionError, ValueError):  # queue closed
                continue

        # delete Tensors after usage to free memory (see torch multiprocessing)
        del batch
        try:
            del trajectories
        except UnboundLocalError:  # already deleted
            pass
Пример #13
0
class DataLoaderMultiFiles(object):
    """DataLoader to iterator over a set of DataSet"""
    def __init__(self, filepaths, partial, batch_s, buffer_s):
        self.filepaths = filepaths
        self.partial = partial
        self.batch_size = batch_s
        self.max_len = buffer_s
        self.buffer = Queue(maxsize=buffer_s)
        self.batch_queue = Queue(maxsize=10)

    def __iter__(self):
        print('Starting processes')
        random.seed(0)
        random.shuffle(self.filepaths)
        filepaths = deque()
        for path in self.filepaths:
            filepaths.append(path)
        self.buffr_processes = []
        args = (self.filepaths, self.buffer, self.partial)
        for i in range(10):
            process = Process(target=fill_buffer, args=args)
            process.daemon = True
            process.start()
            self.buffr_processes.append(process)

        args = (self.buffer, self.batch_queue, self.batch_size)
        self.batch_process = Process(target=fill_batch, args=args)
        self.batch_process.daemon = True
        self.batch_process.start()
        return self

    def done_files(self):
        return sum([e.is_alive() for e in self.buffr_processes])

    def __next__(self):
        # print('get batch')
        # print('buffer_queue: {}, batch_queue: {}'.format(self.buffer.qsize(), self.batch_queue.qsize())) # noqa
        timeout = 1 if self.done_files() == 0 else 60
        try:
            batch = self.batch_queue.get(timeout=timeout)
        except Empty:
            self.kill()
            raise StopIteration
        # print('got batch')
        tmp = LongTensor(batch)
        # print('computing')
        return tmp

    def kill(self):
        print('Killing processes')
        self.buffr_process.terminate()
        self.batch_process.terminate()

    def __del__(self):
        self.kill()
Пример #14
0
def write_batches_from_queue_to_file(queue: Queue, file_path):
    with open(file_path, "a", newline="") as f:
        writer = csv.writer(f)
        while True:
            try:
                batch = queue.get(block=True, timeout=60)
                writer.writerows(batch)
            except Empty:
                print("Timeout during reading from WRITING queue.")
                print(file_path)
                return
Пример #15
0
class GenData:
    def __init__(self, fn, n_processes=4, max_size=200, batchsize=200):
        ##what needs to happen:
        def consumer(Q):
            iterator = get_supervised_batchsize(fn, batchsize=batchsize)  #todo
            while True:
                try:
                    # get a new message
                    size = Q.qsize()
                    #print(size)
                    if size < max_size:
                        # process the data
                        ret = next(iterator)
                        Q.put(ret)
                    else:
                        time.sleep(2)
                except ValueError as e:
                    print(
                        "I think you closed the thing while it was running, but that's okay"
                    )
                    break
                except Exception as e:
                    print("error!", e)
                    break

        self.Q = Queue()
        print("started queue ...")

        # instantiate workers
        self.workers = [
            Process(target=consumer, args=(self.Q, ))
            for i in range(n_processes)
        ]

        for w in self.workers:
            w.start()
        print("started parallel workers, ready to work!")

    def batchIterator(self):
        while True:
            yield self.Q.get()
        #yield from get_supervised_batchsize(self.Q.get, batchsize=batchsize) #is this a slow way of doing this??

    def kill(self):
        #KILL stuff
        # tell all workers, no more data (one msg for each)
        # join on the workers
        for w in self.workers:
            try:
                w.close()  #this will cause a valueError apparently??
            except ValueError:
                print("killed a worker")
                continue
Пример #16
0
class BulkEvaluatorManager:
    def __init__(self, networks, device, num_evaluators, timeout=5):
        self.networks = networks
        self.device = device
        self.timeout = timeout
        self.job_queue = Queue()
        self.parent_conns = []
        self.child_conns = []
        for i in range(num_evaluators):
            parent_conn, child_conn = Pipe()
            self.parent_conns.append(parent_conn)
            self.child_conns.append(child_conn)

    def server_job(self, num_active_workers):
        num_networks = len(self.networks)
        while num_active_workers.value > 0:
            features = [[] for _ in range(num_networks)]
            conns = [[] for _ in range(num_networks)]
            for _ in range(num_active_workers.value):
                try:
                    feature, network_id, evaluator_id = \
                        self.job_queue.get(timeout=self.timeout)
                    features[network_id].append(torch.from_numpy(feature))
                    conns[network_id].append(self.parent_conns[evaluator_id])
                except queue.Empty:
                    break
            for network_id in range(num_networks):
                if len(features[network_id]) == 0:
                    continue

                network = self.networks[network_id]
                network.eval()
                with torch.no_grad():
                    log_p, v = network(
                        torch.stack(features[network_id]).to(self.device))
                    p = F.softmax(log_p, dim=1)
                    p = p.cpu().numpy()
                    v = v.cpu().numpy()

                for i in range(len(conns[network_id])):
                    conns[network_id][i].send((p[i], v[i]))

    def get_server(self, num_active_workers):
        return Process(target=self.server_job, args=(num_active_workers, ))

    def get_evaluator(self, evaluator_id, network_id):
        return BulkEvaluator(
            evaluator_id,
            network_id,
            self.job_queue,
            self.child_conns[evaluator_id],
        )
Пример #17
0
def HandleWorkers(server: socket.socket, replay_memory: ReplayMemory,
                  mem_lock: Lock, param_queue: Queue, shutdown: Value):
    print("Listening for new workers...")
    server.settimeout(1)  # timeout period of 1 second

    num_workers = 0
    workers: Dict[int, socket.socket] = dict()
    state_dict = None

    while shutdown.value <= 0:
        try:
            worker, _ = server.accept()
            print("Connected to new worker")
            worker_id = num_workers
            worker_proc = Process(target=ReceivePlayouts,
                                  args=(worker, worker_id, replay_memory,
                                        mem_lock),
                                  daemon=True)
            worker_proc.start()

            if state_dict is not None:
                # Send the new worker the most up-to-date params
                buffer = io.BytesIO()
                torch.save(state_dict, buffer)
                param_bytes = buffer.getvalue()
                communication.Send(worker, buffer.getvalue())

            workers[worker_id] = worker
            num_workers += 1
        except socket.timeout:
            pass

        if not param_queue.empty():
            # Send the most up-to-date params to all the workers
            state_dict = None
            while not param_queue.empty():
                state_dict = param_queue.get()
            assert (state_dict is not None)

            buffer = io.BytesIO()
            torch.save(state_dict, buffer)
            param_bytes = buffer.getvalue()
            print("Sending new params to workers")
            for worker_id in workers.keys():
                worker: socket.socket = workers[worker_id]
                try:
                    communication.Send(worker, param_bytes)
                except:
                    # Something went wrong with this connection, so remove
                    # this worker
                    print(f"Error with worker {worker_id}, ending connection")
                    workers.pop(worker_id)
Пример #18
0
def main():
    args = parse_args()
    categories = parse_categories(parse_data(args.data)['names'])

    cap = cv2.VideoCapture(0)
    frame_queue = Queue()
    preds_queue = Queue()
    cur_dets = None
    frame_lock = Lock()

    proc = Process(target=detect,
                   args=(frame_queue, preds_queue, frame_lock, args))
    proc.start()

    try:

        while (True):
            ret, frame = cap.read()
            frame_lock.acquire()
            while not frame_queue.empty():
                frame_queue.get()

            frame_queue.put(frame)
            frame_lock.release()

            if not preds_queue.empty():
                cur_dets = preds_queue.get()

            if cur_dets is not None and len(cur_dets) > 0:
                frame = draw_detections_opencv(frame, cur_dets[0], categories)

            cv2.imshow('frame', frame)
            cv2.waitKey(1)

    except KeyboardInterrupt:
        print('Interrupted')
        proc.join()
        cap.release()
        cv2.destroyAllWindows()
Пример #19
0
def eval_all(args, config, network):
    # model_path
    saveDir = os.path.join('../model', args.model_dir, config.model_dir)
    evalDir = os.path.join('../model', args.model_dir, config.eval_dir)
    misc_utils.ensure_dir(evalDir)
    model_file = os.path.join(saveDir,
                              'dump-{}.pth'.format(args.resume_weights))
    assert os.path.exists(model_file)
    # get devices
    str_devices = args.devices
    devices = misc_utils.device_parser(str_devices)
    # load data
    crowdhuman = CrowdHuman(config, if_train=False)
    #crowdhuman.records = crowdhuman.records[:10]
    # multiprocessing
    num_devs = len(devices)
    len_dataset = len(crowdhuman)
    num_image = math.ceil(len_dataset / num_devs)
    result_queue = Queue(500)
    procs = []
    all_results = []
    for i in range(num_devs):
        start = i * num_image
        end = min(start + num_image, len_dataset)
        proc = Process(target=inference,
                       args=(config, network, model_file, devices[i],
                             crowdhuman, start, end, result_queue))
        proc.start()
        procs.append(proc)
    pbar = tqdm(total=len_dataset, ncols=50)
    for i in range(len_dataset):
        t = result_queue.get()
        all_results.append(t)
        pbar.update(1)
    pbar.close()
    for p in procs:
        p.join()
    fpath = os.path.join(evalDir, 'dump-{}.json'.format(args.resume_weights))
    misc_utils.save_json_lines(all_results, fpath)
    # evaluation
    eval_path = os.path.join(evalDir,
                             'eval-{}.json'.format(args.resume_weights))
    eval_fid = open(eval_path, 'w')
    res_line, JI = compute_JI.evaluation_all(fpath, 'box')
    for line in res_line:
        eval_fid.write(line + '\n')
    AP, MR = compute_APMR.compute_APMR(fpath, config.eval_source, 'box')
    line = 'AP:{:.4f}, MR:{:.4f}, JI:{:.4f}.'.format(AP, MR, JI)
    print(line)
    eval_fid.write(line + '\n')
    eval_fid.close()
Пример #20
0
def async_mol2graph(q: Queue, 
                    data: MoleculeDataset, 
                    args: Namespace,
                    num_iters: int,
                    iter_size: int,
                    exit_q: Queue,
                    last_batch: bool=False):
    batches = []
    for i in range(0, num_iters, iter_size):  # will only go up to max size of queue, then yield
        if not last_batch and i + args.batch_size > len(data):
            break
        batch = MoleculeDataset(data[i:i + args.batch_size])
        batches.append(batch)
        if len(batches) == args.batches_per_queue_group:  # many at a time, since synchronization is expensive
            with Pool() as pool:
                processed_batches = pool.map(mol2graph_helper, [(batch, args) for batch in batches])
            q.put(processed_batches)
            batches = []
    if len(batches) > 0:
        with Pool() as pool:
            processed_batches = pool.map(mol2graph_helper, [(batch, args) for batch in batches])
        q.put(processed_batches)
    exit_q.get()  # prevent from exiting until main process tells it to; otherwise we apparently can't read the end of the queue and crash
Пример #21
0
def cuda_is_available():
    # hack to check if cuda is available. calling torch.cuda.is_available in
    # this process breaks the multiprocesscing of multiple environments
    # See: https://github.com/pytorch/pytorch/pull/2811
    from torch.multiprocessing import Process, Queue

    def wrap_cuda_is_available(q):
        q.put(torch.cuda.is_available())

    q = Queue()
    p = Process(target=wrap_cuda_is_available, args=(q, ))
    p.start()
    p.join()
    return q.get()
Пример #22
0
    def _instances(self, file_path: str, manager: Manager, output_queue: Queue) -> Iterator[Instance]:
        """
        A generator that reads instances off the output queue and yields them up
        until none are left (signified by all ``num_workers`` workers putting their
        ids into the queue).
        """
        shards = list(CORPORA[file_path](file_path))
        # Ensure a consistent order before shuffling for testing.
        # shards.sort()
        num_shards = len(shards)

        # If we want multiple epochs per read, put shards in the queue multiple times.
        input_queue = manager.Queue(
            num_shards * self.epochs_per_read + self.num_workers)
        for _ in range(self.epochs_per_read):
            np.random.shuffle(shards)
            for shard in shards:
                input_queue.put(shard)

        # Then put a None per worker to signify no more files.
        for _ in range(self.num_workers):
            input_queue.put(None)

        processes: List[Process] = []
        num_finished = 0

        for worker_id in range(self.num_workers):
            process = Process(target=_worker,
                              args=(self.reader, input_queue, output_queue, worker_id))
            logger.info(f"starting worker {worker_id}")
            process.start()
            processes.append(process)

        # Keep going as long as not all the workers have finished.
        while num_finished < self.num_workers:
            item = output_queue.get()
            if item is None:
                continue
            elif isinstance(item, int):
                # Means a worker has finished, so increment the finished count.
                num_finished += 1
                logger.info(
                    f"worker {item} finished ({num_finished}/{self.num_workers})")
            else:
                # Otherwise it's an ``Instance``, so yield it up.
                yield item

        for process in processes:
            process.join()
        processes.clear()
Пример #23
0
def collectGameDataParallel(network, useNetwork, T, width, height):
    totalGames = 0
    game_images = []
    game_targets = []
    while totalGames < 80:
        images = Queue()
        targets = Queue()
        ngames = 5
        barrier = Barrier(ngames + 1)

        processes=[Process(target=collectGameData, args=(barrier,play_game, network,\
                             useNetwork, T, width,height, images, targets)) \
                                for _ in range(ngames)]
        for p in processes:
            p.start()

        for _ in range(ngames):
            im = images.get()
            game_images.append(copy.deepcopy(im))
            del im
            t = targets.get()
            game_targets.append(copy.deepcopy(t))
            del t
        barrier.wait()

        for p in processes:
            p.join()
        totalGames += ngames
    flattened_images = list(itertools.chain.from_iterable(game_images))
    flattened_targets = list(itertools.chain.from_iterable(game_targets))
    batchSize = min(len(flattened_images), 2048)
    sample_indices = numpy.random.choice(range(len(flattened_images)),
                                         batchSize)
    sample_images = [flattened_images[i] for i in sample_indices]
    sample_targets = [flattened_targets[i] for i in sample_indices]

    return sample_images, sample_targets
Пример #24
0
    def inference_task(inference_queue: mp.Queue, batch_max_size: int):
        inference_service = InferenceService(cfg)

        while True:
            images: list
            images, send_pipe = inference_queue.get(True)
            send_pipes = [send_pipe]
            send_pipe_num_images = [len(images)]
            # get more
            while True:
                if len(images) >= batch_max_size:
                    break
                else:
                    try:
                        images_more, send_pipe_more = inference_queue.get(
                            False)
                        images.extend(images_more)
                        send_pipes.append(send_pipe_more)
                        send_pipe_num_images.append(len(images_more))
                    except Exception:
                        break

            dataloader = DataLoader(
                MemoryFiles(images, None),
                shuffle=False,
                num_workers=1,
                batch_size=batch_max_size,
                collate_fn=MemoryFilesCollator(
                    inference_service.cfg.DATALOADER.SIZE_DIVISIBILITY))
            results = []
            for batch in dataloader:
                result = inference_service.run_inference(batch)
                results.extend(result)
            pipe: multiprocessing.connection.Connection
            for (pipe, num_imgs) in zip(send_pipes, send_pipe_num_images):
                pipe.send(results[:num_imgs])
                del results[:num_imgs]
Пример #25
0
    def collect_samples(self, min_batch_size):
        torch.set_num_threads(1)
        self.policy.to(torch.device('cpu'))
        self.encoder.to(torch.device('cpu'))
        t_start = time.time()
        process_batch_size = int(math.floor(min_batch_size / self.num_process))
        queue = Queue()
        workers = []

        for i in range(self.num_process - 1):
            # don't render other parallel processes
            worker_args = (i + 1, queue, self.env, self.policy, self.encoder,
                           False, self.running_state, self.custom_reward,
                           process_batch_size)
            p = Process(target=collect_samples, args=worker_args)
            workers.append(p)

        for worker in workers:
            worker.start()

        memory, log = collect_samples(0, None, self.env, self.policy,
                                      self.encoder, self.render,
                                      self.running_state, self.custom_reward,
                                      process_batch_size)

        worker_logs = [None] * len(workers)
        worker_memories = [None] * len(workers)
        for _ in workers:
            pid, worker_memory, worker_log = queue.get(timeout=0.5)
            worker_memories[pid - 1] = worker_memory
            worker_logs[pid - 1] = worker_log

        [worker.join() for worker in workers]

        # concat all memories
        for worker_memory in worker_memories:
            memory.append(worker_memory)

        if self.num_process > 1:
            log_list = [log] + worker_logs
            log = merge_log(log_list)

        t_end = time.time()
        log['sample_time'] = t_end - t_start

        self.policy.to(device)
        self.encoder.to(device)
        return memory, log
Пример #26
0
def tracking(queue_items: mp.Queue, area):
    txt_writer = open(txt_path, 'wt')
    deepsorts = []
    for i in range(5):
        deepsort = DeepSort("deep/checkpoint/ckpt.t7")
        deepsort.extractor.net.share_memory()
        deepsorts.append(deepsort)
    xmin, ymin, xmax, ymax = area
    while True:
        try:
            queue_item = queue_items.get(block=True, timeout=3)
        except queue.Empty:
            print('Empty queue. End?')
            break

        batch_results = queue_item.detect_results
        imgs = queue_item.imgs
        ori_imgs = queue_item.ori_imgs
        frame_ids = queue_item.frame_ids
        for batch_idx, results in enumerate(batch_results):  # frame by frame
            for class_id in [1, 2, 3, 4]:
                bbox_xywh, cls_conf = bbox_to_xywh_cls_conf(results, class_id)
                if (bbox_xywh is not None) and (len(bbox_xywh) > 0):
                    outputs = deepsorts[class_id].update(
                        bbox_xywh, cls_conf, imgs[batch_idx])
                    if len(outputs) > 0:
                        bbox_xyxy = outputs[:, :4]
                        identities = outputs[:, -1]

                        offset = (xmin, ymin)
                        if is_write:
                            ori_im = draw_bboxes(ori_imgs[batch_idx],
                                                 bbox_xyxy,
                                                 identities,
                                                 class_id,
                                                 offset=(xmin, ymin))
                        for i, box in enumerate(bbox_xyxy):
                            x1, y1, x2, y2 = [int(i) for i in box]
                            x1 += offset[0]
                            x2 += offset[0]
                            y1 += offset[1]
                            y2 += offset[1]
                            idx = int(
                                identities[i]) if identities is not None else 0
                            txt_writer.write(
                                f'{frame_ids[batch_idx]} {class_id} {idx} {x1} {y1} {x2} {y2}\n'
                            )
    txt_writer.close()
Пример #27
0
def inference_video(
    model: torch.nn.Module,
    gpu_id: int,
    data_queue: mp.Queue,
    result_queue: mp.Queue,
    # dataset: Union[Video_2D_Inference, Video_3D_Inference],
    # batch_size: int, num_worker: int,
):
    model = model.eval().cuda(device=gpu_id)
    with torch.no_grad():
        # for data, fn, idx, done in DataLoader(dataset, batch_size=batch_size, num_workers=num_worker):
        while True:
            data, fn, idx, done = data_queue.get()
            out = model(data.cuda(device=gpu_id)).detach().cpu()
            result_queue.put((out, fn, idx.clone(), done.clone()))
            del data, idx, done
Пример #28
0
class IterableParquetDataset(IterableDataset):
    def __init__(self, path, process_func):
        super().__init__()
        dataset = ds.dataset(path)
        self.process_func = process_func

        self.batches = Queue()
        [self.batches.put(batch) for batch in dataset.to_batches()]

    def __iter__(self):
        while True:
            if self.batches.empty() == True:
                self.batches.close()
                break

            batch = self.batches.get().to_pydict()
            batch.update(self.process_func(batch))
            yield batch
Пример #29
0
    def decorated_function(*args, **kwargs):
        queue = Queue()
        def _queue_result():
            exception, trace, res = None, None, None
            try:
                res = func(*args, **kwargs)
            except Exception as e:
                exception = e
                trace = traceback.format_exc()
            queue.put((res, exception, trace))

        start_new_thread(_queue_result, ())
        result, exception, trace = queue.get()
        if exception is None:
            return result
        else:
            assert isinstance(exception, Exception)
            raise exception.__class__(trace)
    def _instances(self, file_path: str, manager: Manager, output_queue: Queue) -> Iterator[Instance]:
        """
        A generator that reads instances off the output queue and yields them up
        until none are left (signified by all ``num_workers`` workers putting their
        ids into the queue).
        """
        shards = glob.glob(file_path)
        num_shards = len(shards)

        # If we want multiple epochs per read, put shards in the queue multiple times.
        input_queue = manager.Queue(num_shards * self.epochs_per_read + self.num_workers)
        for _ in range(self.epochs_per_read):
            random.shuffle(shards)
            for shard in shards:
                input_queue.put(shard)

        # Then put a None per worker to signify no more files.
        for _ in range(self.num_workers):
            input_queue.put(None)

        processes: List[Process] = []
        num_finished = 0

        for worker_id in range(self.num_workers):
            process = Process(target=_worker,
                              args=(self.reader, input_queue, output_queue, worker_id))
            logger.info(f"starting worker {worker_id}")
            process.start()
            processes.append(process)

        # Keep going as long as not all the workers have finished.
        while num_finished < self.num_workers:
            item = output_queue.get()
            if isinstance(item, int):
                # Means a worker has finished, so increment the finished count.
                num_finished += 1
                logger.info(f"worker {item} finished ({num_finished}/{self.num_workers})")
            else:
                # Otherwise it's an ``Instance``, so yield it up.
                yield item

        for process in processes:
            process.join()
        processes.clear()
Пример #31
0
def main(args):
    # Parse device ids
    default_dev, *parallel_dev = parse_devices(args.devices)
    all_devs = parallel_dev + [default_dev]
    all_devs = [int(x.replace('gpu', '')) for x in all_devs]
    nr_devs = len(all_devs)

    print("nr_dev: {}".format(nr_devs))

    nr_files = len(broden_dataset.record_list['validation_my_material'])
    if args.num_val > 0:
        nr_files = min(nr_files, args.num_val)
    nr_files_per_dev = math.ceil(nr_files / nr_devs)

    pbar = tqdm(total=nr_files)

    result_queue = Queue(5)
    procs = []
    for dev_id in range(nr_devs):
        start_idx = dev_id * nr_files_per_dev
        end_idx = min(start_idx + nr_files_per_dev, nr_files)
        proc = Process(target=worker,
                       args=(args, dev_id, start_idx, end_idx, result_queue))
        print('process:%d, start_idx:%d, end_idx:%d' %
              (dev_id, start_idx, end_idx))
        proc.start()
        procs.append(proc)

    # master fetches results
    all_result = []
    for i in range(nr_files):
        all_result.append(result_queue.get())
        pbar.update(1)

    for p in procs:
        p.join()

    benchmark = get_benchmark_result(all_result)

    print('[Eval Summary]:')
    print(benchmark)

    print('Evaluation Done!')
def _worker(reader: DatasetReader,
            input_queue: Queue,
            output_queue: Queue,
            index: int) -> None:
    """
    A worker that pulls filenames off the input queue, uses the dataset reader
    to read them, and places the generated instances on the output queue.
    When there are no filenames left on the input queue, it puts its ``index``
    on the output queue and doesn't do anything else.
    """
    # Keep going until you get a file_path that's None.
    while True:
        file_path = input_queue.get()
        if file_path is None:
            # Put my index on the queue to signify that I'm finished
            output_queue.put(index)
            break

        logger.info(f"reading instances from {file_path}")
        for instance in reader.read(file_path):
            output_queue.put(instance)
Пример #33
0
    r_list = [0] * pop_size  # result list
    solutions = es.ask()

    # push parameters to queue
    for s_id, s in enumerate(solutions):
        for _ in range(n_samples):
            p_queue.put((s_id, s))

    # retrieve results
    if args.display:
        pbar = tqdm(total=pop_size * n_samples)
    for _ in range(pop_size * n_samples):
        while r_queue.empty():
            sleep(.1)
        r_s_id, r = r_queue.get()
        r_list[r_s_id] += r / n_samples
        if args.display:
            pbar.update(1)
    if args.display:
        pbar.close()

    es.tell(solutions, r_list)
    es.disp()

    # evaluation and saving
    if epoch % log_step == log_step - 1:
        best_params, best, std_best = evaluate(solutions, r_list)
        print("Current evaluation: {}".format(best))
        if not cur_best or cur_best > best:
            cur_best = best