Пример #1
0
    def train_forward(self, x):
        features, adverbs, actions = x[0], x[1], x[2]
        neg_adverbs, neg_actions = x[3], x[4]
        action_embedding = self.action_embedder(actions)
        neg_action_embedding = self.action_embedder(neg_actions)
        if self.transformer:
            video_embedding, attention_weights = self.video_embedder(
                features, action_embedding)
        else:
            video_embedding = self.video_embedder(features)
            attention_weights = None

        pos_modifiers = torch.stack(
            [self.action_modifiers[adv.item()] for adv in adverbs])
        positive = self.apply_modifiers(pos_modifiers, action_embedding)
        negative_act = self.apply_modifiers(pos_modifiers,
                                            neg_action_embedding)

        neg_modifiers = torch.stack(
            [self.action_modifiers[adv.item()] for adv in neg_adverbs])
        negative_adv = self.apply_modifiers(neg_modifiers, action_embedding)

        loss_triplet_act = F.triplet_margin_loss(video_embedding,
                                                 positive,
                                                 negative_act,
                                                 margin=self.margin)
        loss_triplet_adv = F.triplet_margin_loss(video_embedding,
                                                 positive,
                                                 negative_adv,
                                                 margin=self.margin)
        loss = [loss_triplet_act, loss_triplet_adv]

        return loss, None, attention_weights, video_embedding
Пример #2
0
    def eval_pair_embed_losses(self, args: CommandlineArgs, img_feat,
                               img_hidden_emb, attr_labels, obj_labels,
                               neg_attr_labels, neg_obj_labels,
                               nll_loss_funcs):
        device = args.device

        with ns_profiling_label('labels_to_embeddings'):
            h_A_pos, h_O_pos, g_hidden_pos, g_img_pos = self.labels_to_embeddings(
                attr_labels, obj_labels)
            _, _, g_hidden_neg, g_img_neg = self.labels_to_embeddings(
                neg_attr_labels, neg_obj_labels)

        tloss_g_imgfeat = torch.tensor(0.).to(device)
        if args.train.lambda_feat > 0:
            with ns_profiling_label('tloss_g_imgfeat'):
                tloss_g_imgfeat = triplet_margin_loss(
                    img_feat,
                    g_img_pos,
                    g_img_neg,
                    margin=args.train.triplet_loss_margin)

        tloss_g_hidden = torch.tensor(0.).to(device)
        if args.train.lambda_ao_emb > 0:
            with ns_profiling_label('tloss_g_hidden'):
                tloss_g_hidden = triplet_margin_loss(
                    img_hidden_emb,
                    g_hidden_pos,
                    g_hidden_neg,
                    margin=args.train.triplet_loss_margin)

        # Loss_invert terms
        loss_inv_core = torch.tensor(0.).to(device)
        if args.train.lambda_aux_disjoint > 0:  # check hp name
            with ns_profiling_label('loss_inv_core'):
                loss_inv_core = nll_sum_loss(
                    self.attr_inv_core_logits(h_A_pos),
                    self.obj_inv_core_logits(h_O_pos), attr_labels, obj_labels,
                    nll_loss_funcs)

        loss_inv_g_imgfeat = torch.tensor(0.).to(device)
        if args.train.lambda_aux_img > 0:  # check hp name
            with ns_profiling_label('loss_inv_g_imgfeat'):
                loss_inv_g_imgfeat = nll_sum_loss(
                    self.attr_inv_g_imgfeat_logits(g_img_pos),
                    self.obj_inv_g_imgfeat_logits(g_img_pos), attr_labels,
                    obj_labels, nll_loss_funcs)

        loss_inv_g_hidden = torch.tensor(0.).to(device)
        if args.train.lambda_aux > 0:  # check hp name
            with ns_profiling_label('loss_inv_g_hidden'):
                loss_inv_g_hidden = nll_sum_loss(
                    self.attr_inv_g_hidden_logits(g_hidden_pos),
                    self.obj_inv_g_hidden_logits(g_hidden_pos), attr_labels,
                    obj_labels, nll_loss_funcs)

        return tloss_g_hidden, tloss_g_imgfeat, loss_inv_core, loss_inv_g_hidden, loss_inv_g_imgfeat
Пример #3
0
 def calculate_triplet(self, cross_feature, pos_feature, neg_feature, count,
                       cross_length):
     if self.loss_ratio:
         logits = F.triplet_margin_loss(cross_feature, pos_feature,
                                        neg_feature)
     else:
         logits = F.triplet_margin_loss(cross_feature, pos_feature,
                                        neg_feature)
     ipdb.set_trace()
     return logits
Пример #4
0
    def forward(self, x):
        x = x.view(x.size(0), -1)
        x = self.fc1(x)
        x = self.relu1(x)
        x = self.drop1(x)

        x = self.fc2(x)
        x = self.relu2(x)
        x = self.drop2(x)

        x = self.fc3(x)

        l2_norm = x.div(torch.norm(x, p=2, dim=1).repeat(x.size(1), 1).t())
        warped_l2_norm = self.masklayer(l2_norm)

        anchors = Variable(torch.zeros(128)).cuda().expand([3080, 128])
        positives = tile(warped_l2_norm[0:55], 0, 56)
        negatives = warped_l2_norm[55:].expand(55, 56, 128).flatten().view(
            56 * 55, 128)

        assert x.size(0) == 111

        loss = F.triplet_margin_loss(anchors,
                                     positives,
                                     negatives,
                                     p=2,
                                     margin=0.2)

        return loss, warped_l2_norm
Пример #5
0
    def forward(self, inputs, targets, perturbed_feature):
        """
        Args:
        - inputs: feature matrix with shape (batch_size, feat_dim)
        - targets: ground truth labels with shape (num_classes)
        """
        n = inputs.size(0)

        # Compute pairwise distance, replace by the official when merged
        dist = torch.pow(inputs, 2).sum(dim=1, keepdim=True).expand(n, n)
        dist = dist + dist.t()
        dist.addmm_(1, -2, inputs, inputs.t())
        dist = dist.clamp(min=1e-12).sqrt()  # for numerical stability
        # For each anchor, find the hardest positive and negative
        mat_similarity = targets.expand(n,
                                        n).eq(targets.expand(n,
                                                             n).t()).float()

        sorted_mat_distance, positive_indices = torch.sort(
            dist + (-100000.0) * (1 - mat_similarity), dim=1, descending=True)
        hard_p = sorted_mat_distance[:, 0]
        hard_p_indice = positive_indices[:, 0]
        sorted_mat_distance, negative_indices = torch.sort(
            dist + 100000.0 * mat_similarity, dim=1, descending=False)
        hard_n = sorted_mat_distance[:, 0]
        hard_n_indice = negative_indices[:, 0]

        hard_p_feature = inputs[hard_p_indice, :]
        hard_n_feature = inputs[hard_n_indice, :]

        loss = 10 * F.triplet_margin_loss(perturbed_feature, hard_n_feature,
                                          hard_p_feature, 0.5)

        return loss
Пример #6
0
def train(data_loader, model, optimizer, args, writer):
    for batch in data_loader:
        (images, labels, idx, pimages, plabels, pidx, nimages, nlabels, nidx) = map(
            lambda a: a.to(args.device), batch
        )

        optimizer.zero_grad()
        p_labels, a, rsample = model(images, idx)
        _, b, _ = model(pimages, pidx)
        _, c, _ = model(nimages, nidx)
        loss_margin = F.triplet_margin_loss(a, b, c, margin=0.3, swap=True)
        # loss_class = F.cross_entropy(p_labels, labels)
        bs = labels.shape[0]
        k = p_labels.shape[1]
        loss_class = (
            kornia.losses.focal_loss(
                p_labels.view(bs, k, 1, 1).cpu(), labels.view(bs, 1, 1).cpu(), 0.5
            )
            .to(args.device)
            .mean()
        )
        loss = loss_margin * 10 + loss_class
        loss.backward()

        # Logs
        writer.add_scalar("loss/train", loss.item(), args.steps)

        optimizer.step()
        args.steps += 1
Пример #7
0
 def forward(self):
     a = torch.randn(3, 2)
     b = torch.rand(3, 2)
     c = torch.rand(3)
     log_probs = torch.randn(50, 16, 20).log_softmax(2).detach()
     targets = torch.randint(1, 20, (16, 30), dtype=torch.long)
     input_lengths = torch.full((16, ), 50, dtype=torch.long)
     target_lengths = torch.randint(10, 30, (16, ), dtype=torch.long)
     return len(
         F.binary_cross_entropy(torch.sigmoid(a), b),
         F.binary_cross_entropy_with_logits(torch.sigmoid(a), b),
         F.poisson_nll_loss(a, b),
         F.cosine_embedding_loss(a, b, c),
         F.cross_entropy(a, b),
         F.ctc_loss(log_probs, targets, input_lengths, target_lengths),
         # F.gaussian_nll_loss(a, b, torch.ones(5, 1)), # ENTER is not supported in mobile module
         F.hinge_embedding_loss(a, b),
         F.kl_div(a, b),
         F.l1_loss(a, b),
         F.mse_loss(a, b),
         F.margin_ranking_loss(c, c, c),
         F.multilabel_margin_loss(self.x, self.y),
         F.multilabel_soft_margin_loss(self.x, self.y),
         F.multi_margin_loss(self.x, torch.tensor([3])),
         F.nll_loss(a, torch.tensor([1, 0, 1])),
         F.huber_loss(a, b),
         F.smooth_l1_loss(a, b),
         F.soft_margin_loss(a, b),
         F.triplet_margin_loss(a, b, -b),
         # F.triplet_margin_with_distance_loss(a, b, -b), # can't take variable number of arguments
     )
def train(train_loader, model, optimizer, epoch, logger):
    # switch to train mode
    model.train()
    pbar = tqdm(enumerate(train_loader))
    for batch_idx, (data_a, data_p, data_n) in pbar:
        if args.cuda:
            data_a, data_p, data_n = data_a.cuda(), data_p.cuda(), data_n.cuda()

        data_a, data_p, data_n = Variable(data_a), Variable(data_p), Variable(data_n)

        out_a, out_p, out_n = model(data_a), model(data_p), model(data_n)

        #hardnet loss
        loss = F.triplet_margin_loss(out_p, out_a, out_n, margin=args.margin, swap=args.anchorswap)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        adjust_learning_rate(optimizer, args)
        if(logger!=None):
         logger.log_value('loss', loss.data[0]).step()

        if batch_idx % args.log_interval == 0:
            pbar.set_description(
                'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data_a), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader),
                    loss.data[0]))

    torch.save({'epoch': epoch + 1, 'state_dict': model.state_dict()},
               '{}/checkpoint_{}.pth'.format(LOG_DIR, epoch))
Пример #9
0
def adaptive_triplet_loss(anchor, positives, negatives, **kwargs):
    margin = kwargs.pop('margin', 0.25)
    p = kwargs.pop('p', 2)
    eps = kwargs.pop('eps', 1e-6)
    swap = kwargs.pop('swap', True)
    adaptive_factor = kwargs.pop('adaptive_factor', False)

    if kwargs:
        raise TypeError('Unexpected **kwargs: %r' % kwargs)

    tt_loss = None
    cpt = 0
    for positive in positives:
        for negative in negatives:
            c_loss = func.triplet_margin_loss(anchor,
                                              positive,
                                              negative,
                                              margin=margin,
                                              eps=eps,
                                              p=p,
                                              swap=swap)
            if tt_loss is None:
                tt_loss = c_loss
            else:
                tt_loss += c_loss

            if adaptive_factor:
                cpt += 1 if c_loss.item() > 0 else 0
            else:
                cpt += 1

    tt_loss /= cpt if cpt else 1
    return tt_loss
Пример #10
0
def trainer_Triplet(model, epoch=20000):
    lr = 0.0002
    optimizer = optim.Adam(model.parameters(), lr=lr)
    avg_loss = 0
    criterion = BatchHardTripletLoss()
    for index in range(epoch):
        if index % 10000 == 0:
            lr /= 10
            optimizer = optim.Adam(model.parameters(), lr=lr)

        anchor, pos, neg = dataloader.get_triplet_batch()
        anchor = anchor.to(device)
        pos = pos.to(device)
        neg = neg.to(device)

        anchor_features = model(anchor)
        pos_features = model(pos)
        neg_features = model(neg)

        #loss = criterion(embedding, targets)
        loss = F.triplet_margin_loss(anchor_features, pos_features,
                                     neg_features)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        avg_loss += loss.item()
        if index % 2000 == 0 and index != 0:
            path = os.path.join(model_path,
                                "{}_BH_VeRI_{}.pt".format(model_name, index))
            torch.save(model.state_dict(), path)
        if index % 50 == 0 and index != 0:
            print('batch {}  avgloss {}'.format(index, avg_loss / 50))
            avg_loss = 0
Пример #11
0
 def forward(self,
             anchor_sentences: List[str],
             positive_sentences: List[str],
             negative_sentences: List[str],
             loss_kwargs: Dict[str, Any] = None) -> torch.FloatTensor:
     """
     Returns triplet margin loss so that model can be fine-tuned for ranking.
     # Parameters
     anchor_sentences: List[str]
         List of "anchor" sentences.
     positive_sentences: List[str]
         List of sentences that should be close to corresponding "anchor" sentences.
     negative_sentences: List[str]
         List of sentences that should be distant to corresponding "anchor" sentences.
     loss_kwargs: Dict[str, Any]
         Optional dictionary of arguments to be passed to the `triplet_margin_loss` function.
         See PyTorch docs for more details:
             https://pytorch.org/docs/master/nn.functional.html#triplet-margin-loss
     # Returns
     loss : torch.FloatTensor
         Scalar loss value.
     """
     assert len(anchor_sentences) == len(positive_sentences) == len(
         negative_sentences)
     loss_kwargs = loss_kwargs or {}
     anchor_embeddings = self._encode(anchor_sentences)
     positive_embeddings = self._encode(positive_sentences)
     negative_embeddings = self._encode(negative_sentences)
     loss = F.triplet_margin_loss(anchor_embeddings, positive_embeddings,
                                  negative_embeddings, **loss_kwargs)
     return loss
Пример #12
0
    def train_forward(self, img, obj_label, pos_op_label, neg_obj,
                      neg_op_label):
        anchor = self.image_embedder(img)

        obj_emb = self.obj_embedder(
            torch.tensor(obj_label))  # , dtype=torch.long))
        pos_op = self.attr_ops[pos_op_label]
        positive = self.apply_op(obj_emb, pos_op)

        neg_obj = torch.tensor(self.objects.index(neg_obj))
        neg_obj_emb = self.obj_embedder(neg_obj)  #, dtype=torch.long))

        neg_op_label = torch.tensor(self.operators.index(neg_op_label))
        neg_op = self.attr_ops[neg_op_label]
        negative = self.apply_op(neg_obj_emb, neg_op)

        # =============================================================================
        #         print(pos_op)
        #         print(positive)
        #         print()
        #         print(neg_op)
        #         print(negative)
        # =============================================================================

        loss = F.triplet_margin_loss(anchor, positive, negative, margin=1.5)

        return loss
Пример #13
0
 def test_triplet_margin_loss(self):
     inp1 = torch.randn(32,
                        128,
                        device='cuda',
                        dtype=self.dtype,
                        requires_grad=True)
     inp2 = torch.randn(32,
                        128,
                        device='cuda',
                        dtype=self.dtype,
                        requires_grad=True)
     inp3 = torch.randn(32,
                        128,
                        device='cuda',
                        dtype=self.dtype,
                        requires_grad=True)
     output = F.triplet_margin_loss(inp1,
                                    inp2,
                                    inp3,
                                    margin=1.0,
                                    p=2,
                                    eps=1e-06,
                                    swap=False,
                                    size_average=None,
                                    reduce=None,
                                    reduction='mean')
Пример #14
0
    def get_loss1_loss2(self, img_loader, data_loader_wo_img):
        self.model.eval()

        loss1 = []
        loss2 = []

        with torch.no_grad():
            if self.dataset == 'age':
                score_dict = self.get_all_rank_scores(img_loader)

                for img_id1, img_id2, label, _, _, _ in data_loader_wo_img:
                    img_id1, img_id2 = img_id1.to(self.device), img_id2.to(self.device)
                    label = label.to(self.device)

                    for i1, i2, l in zip(img_id1, img_id2, label):
                        score_diff = score_dict[int(i1)] - score_dict[int(i2)]
                        loss1.append((score_diff - l) ** 2 * 0.5)
                        loss2.append((score_diff + l) ** 2 * 0.5)
            elif self.dataset == 'lfw':
                score_dict = self.get_all_rank_scores_lfw(img_loader)

                for img_id1, img_id2, label, attr_id, _, _ in data_loader_wo_img:
                    img_id1, img_id2 = img_id1.to(self.device), img_id2.to(self.device)
                    label, attr_id = label.to(self.device), attr_id.to(self.device)

                    for i1, i2, l, a in zip(img_id1, img_id2, label, attr_id):
                        score_diff = score_dict[int(i1)][int(a)].item() - score_dict[int(i2)][int(a)].item()
                        loss1.append((score_diff - l) ** 2 * 0.5)
                        loss2.append((score_diff + l) ** 2 * 0.5)
            elif self.dataset == 'food':
                score_dict = self.get_all_rank_scores_lfw(img_loader)

                for anc, pos, neg, _ in data_loader_wo_img:
                    anc, pos, neg = anc.to(self.device), pos.to(self.device), neg.to(self.device)

                    for a, p, n in zip(anc, pos, neg):
                        output1 = score_dict[int(a)].view(1,-1)
                        output2 = score_dict[int(p)].view(1,-1)
                        output3 = score_dict[int(n)].view(1,-1)
                        l1 = triplet_margin_loss(output1, output2, output3, margin=1.0, p=2)
                        l2 = triplet_margin_loss(output1, output3, output2, margin=1.0, p=2)
                        
                        loss1.append(l1.item())
                        loss2.append(l2.item())


        return np.array(loss1, dtype=float), np.array(loss2, dtype=float)
Пример #15
0
    def forward(self, embeddings, labels):
        embeddings_sqr = embeddings.pow(2).sum(dim=1)
        distance_matrix = torch.addmm(1, embeddings_sqr + embeddings_sqr.t(),
                                      -2, embeddings, embeddings.t()).cpu()
        labels = labels.cpu().numpy()
        triplets = []

        for label in set(labels):
            label_mask = (labels == label)
            label_indices = np.where(label_mask)[0]

            if len(label_indices) < 2:
                continue

            negative_indices = np.where(np.logical_not(label_mask))[0]
            anchor_positive_pairs = np.array(
                list(combinations(label_indices, 2)))
            ap_distances = distance_matrix[anchor_positive_pairs[:, 0],
                                           anchor_positive_pairs[:, 1]]

            for (anchor_idx,
                 positive_idx), ap_distance in zip(anchor_positive_pairs,
                                                   ap_distances):
                loss_values = ap_distance - distance_matrix[
                    anchor_idx, negative_indices] + self.margin
                if len(loss_values) > 0:
                    loss_values = loss_values.detach().cpu().numpy()

                    if self.hard:
                        hard_negative_idx = np.argmax(loss_values)
                        if loss_values[hard_negative_idx] > 0:
                            triplets.append([
                                anchor_idx, positive_idx,
                                negative_indices[hard_negative_idx]
                            ])
                    else:
                        semihard_negative_indices = np.where(
                            np.logical_and(loss_values < self.margin,
                                           loss_values > 0))[0]
                        if len(semihard_negative_indices) > 0:
                            semihard_negative_idx = np.random.choice(
                                semihard_negative_indices)
                            triplets.append([
                                anchor_idx, positive_idx,
                                negative_indices[semihard_negative_idx]
                            ])

        if len(triplets) > 0:
            triplets = np.array(triplets)
            return F.triplet_margin_loss(embeddings[triplets[:, 0]],
                                         embeddings[triplets[:, 1]],
                                         embeddings[triplets[:, 2]],
                                         margin=self.margin)
        else:
            return torch.tensor(0,
                                dtype=torch.float32,
                                device=embeddings.device)
Пример #16
0
    def forward(self, embedded_a, embedded_p, embedded_n):

        return F.triplet_margin_loss(embedded_a,
                                     embedded_p,
                                     embedded_n,
                                     margin=self.margin,
                                     p=2,
                                     eps=1e-6,
                                     swap=False)
Пример #17
0
 def criterion_tripletmargin(input,
                             positive,
                             negative,
                             margin=0.1,
                             size_average=True):
     loss = F.triplet_margin_loss(input, positive, negative, margin=margin)
     if not size_average:
         return loss * input.size(0)
     return loss
Пример #18
0
def triplet_margin_loss(anchor,
                        positives,
                        negatives,
                        margin=0.25,
                        p=2,
                        eps=1e-6,
                        factor=1,
                        swap=False):
    return factor * func.triplet_margin_loss(
        anchor, positives, negatives, margin=margin, p=p, eps=eps, swap=swap)
Пример #19
0
 def loss_fn(self, prediction, target=None):
     """
     Triplet loss.
     :param prediction:
     :param target:
     :return:
     """
     return F.triplet_margin_loss(anchor=prediction[0], positive=prediction[1], negative=prediction[2],
                                  margin=self.loss_margin,
                                  p=self.loss_p)
Пример #20
0
    def forward(self, embeddings, target):
        triplets = self.triplet_selector.get_triplets(embeddings, target)

        if embeddings.is_cuda:
            triplets = triplets.cuda()
        anchor = embeddings[triplets[:, 0]]
        positive = embeddings[triplets[:, 1]]
        negative = embeddings[triplets[:, 2]]
        return F.triplet_margin_loss(anchor, positive, negative, self.margin,
                                     self.p, self.eps, self.swap)
Пример #21
0
class TripletMarginLoss(torch.nn.Module):
    def __init__(self, margin=1.0, p=2, eps=1e-6, swap=True):
        super(TripletMarginLoss, self).__init__()
        self.margin = margin
        self.p = p
        self.eps = eps
        self.swap = swap

    def forward(self, (anchor, positive, negative)):
        return F.triplet_margin_loss(anchor, positive, negative, self.margin,
                                     self.p, self.eps, self.swap)
 def train_forward(self, x, epoch):
     img, attr_label, obj_label = x[0], x[1], x[2]
     neg_attrs, neg_objs = x[4], x[5]
     # in this way
     vpos = self.compose(attr_label, obj_label)
     vneg = self.compose(neg_attrs, neg_objs)
     if self.args.img_embed==1 or self.args.glove_init ==1:
         img = self.image_feat(img)
     loss = F.triplet_margin_loss(img, vpos,
                                  vneg, margin=.5)
     return loss
Пример #23
0
def TripletLoss(anchor, positive, negatives):
    """ 
	We found that add all the negative ones together can 
	yeild relatively better performance.
	"""
    batch_size, neg_num, embed_size = negatives.size()
    negatives = negatives.view(neg_num, batch_size, embed_size)

    losses = 0
    for idx, negative in enumerate(negatives):
        losses += torch.mean(F.triplet_margin_loss(anchor, positive, negative))
    return losses / (idx + 1)
Пример #24
0
def train_model(num_epochs, optim_name=""):
    model = DeepRank()

    if torch.cuda.is_available():
        model.cuda()

    if optim_name == "adam":
        optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
    elif optim_name == "rms":
        optimizer = optim.RMSprop(model.parameters(), lr=LEARNING_RATE)
    else:
        optimizer = optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=0.9, nesterov=True)
    print(f'==> Selected optimizer : {optim_name}')

    model.train()  # set to training mode

    start_time = time.time()
    for epoch in range(num_epochs):

        print(f'Epoch {epoch + 1}/{num_epochs}')
        print('-' * 10)

        running_loss = []
        for batch_idx, (Q, P, N) in enumerate(train_loader):
            if torch.cuda.is_available():
                Q, P, N = Variable(Q).cuda(), Variable(P).cuda(), Variable(N).cuda()
            else:
                Q, P, N = Variable(Q), Variable(P), Variable(N)

            # set gradient to 0
            optimizer.zero_grad()

            Q_embedding, P_embedding, N_embedding = model(Q), model(P), model(N)

            # get triplet loss
            loss = F.triplet_margin_loss(anchor=Q_embedding, positive=P_embedding, negative=N_embedding)

            # back-propagate & optimize
            loss.backward()
            optimizer.step()

            # calculate loss
            running_loss.append(loss.item())

            print(f'\t--> epoch{epoch+1} {100 * batch_idx / len(train_loader):.2f}% done... loss : {loss:.4f}')

        epoch_loss = np.mean(running_loss)
        print(f'epoch{epoch+1} average loss: {epoch_loss:.2f}')

    finish_time = time.time()
    print(f'elapsed time : {time.strftime("%H:%M:%S", time.gmtime(finish_time - start_time))}')

    torch.save(model.state_dict(), MODEL_PATH)  # save model parameters
Пример #25
0
def test(model,
         test_loader,
         epoch,
         margin,
         threshlod,
         is_cuda=True,
         log_interval=1000):
    model.eval()
    test_loss = AverageMeter()
    accuracy = 0
    num_p = 0
    total_num = 0
    batch_num = len(test_loader)
    for batch_idx, (data_a, data_p, data_n, target) in enumerate(test_loader):
        if is_cuda:
            data_a = data_a.cuda()
            data_p = data_p.cuda()
            data_n = data_n.cuda()
            target = target.cuda()

        data_a = Variable(data_a, volatile=True)
        data_p = Variable(data_p, volatile=True)
        data_n = Variable(data_n, volatile=True)
        target = Variable(target)

        out_a = model(data_a)
        out_p = model(data_p)
        out_n = model(data_n)

        loss = F.triplet_margin_loss(out_a, out_p, out_n, margin)

        dist1 = F.pairwise_distance(out_a, out_p)
        dist2 = F.pairwise_distance(out_a, out_n)
        #print('dist1', dist1)
        #print('dist2',dist2)
        #print('threshlod', threshlod)

        num = ((dist1 < threshlod).sum() + (dist2 > threshlod).sum()).data[0]
        num_p += num
        num_p = 1.0 * num_p
        total_num += data_a.size()[0] * 2
        #print('num--num_p -- total',  num, num_p , total_num)
        test_loss.update(loss.data[0])
        if (batch_idx + 1) % log_interval == 0:
            accuracy_tmp = num_p / total_num
            print('Test- Epoch {:04d}\tbatch:{:06d}/{:06d}\tAccuracy:{:.04f}\tloss:{:06f}'\
                    .format(epoch, batch_idx+1, batch_num, accuracy_tmp, test_loss.avg))
            test_loss.reset()

    accuracy = num_p / total_num
    return accuracy
Пример #26
0
    def epoch(self):
        self.model.train()
        for (anchor, positive, negative) in self.dataloader:
            if anchor.size()[0] != self.batch_size:
                continue

            if self.cuda:
                anchor = anchor.cuda()
                positive = positive.cuda()
                negative = negative.cuda()

            z_anchor = self.model(anchor)
            z_positive = self.model(positive)

            select_triplets = self.use_hard_triplets
            if self.use_hard_triplets and self.current_epoch < 4:
                negative = negative[:, 0]
                select_triplets = False

            if select_triplets:
                ext_anchor = torch.stack([z_anchor], dim=1)
                n_neg_samples = negative.size(1)
                all_negs = negative.view(-1, negative.size(2), negative.size(3), negative.size(4))
                z_all_negs = self.model(all_negs).view(self.batch_size, n_neg_samples, z_anchor.size(1))
                distances = torch.sum(torch.pow(ext_anchor - z_all_negs, 2), dim=2)
                hard_sample_positions = torch.argmin(distances, dim=1).type(torch.int64)
                batch_indices = torch.arange(0, self.batch_size).type(torch.int64)
                if self.cuda:
                    batch_indices = batch_indices.cuda()
                z_negative = z_all_negs[batch_indices, hard_sample_positions]
            else:
                z_negative = self.model(negative)
            loss = F.triplet_margin_loss(z_anchor, z_positive, z_negative, margin=self.margin)

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()


        return {
            "epoch": self.current_epoch,
            "losses": {
                "loss": loss.detach().item(),
            },
            "networks": {
                "model": self.model,
            },
            "optimizers": {
                "optimizer": self.optimizer,
            }
        }
Пример #27
0
def get_loss1_loss2_food(model, img_loader, device, data_loader_wo_img):
    model.eval()
    
    loss1 = []
    loss2 = []

    score_dict = get_all_rank_scores_lfw(model, img_loader, device)

    with torch.no_grad():
        for anc, pos, neg, _ in data_loader_wo_img:
            anc, pos, neg = anc.to(device), pos.to(device), neg.to(device)

            for a, p, n in zip(anc, pos, neg):
                output1 = score_dict[int(a)].view(1,-1)
                output2 = score_dict[int(p)].view(1,-1)
                output3 = score_dict[int(n)].view(1,-1)
                l1 = triplet_margin_loss(output1, output2, output3, margin=1.0, p=2)
                l2 = triplet_margin_loss(output1, output3, output2, margin=1.0, p=2)

                loss1.append(l1.item())
                loss2.append(l2.item())
    
    return np.array(loss1, dtype=float), np.array(loss2, dtype=float)
Пример #28
0
    def _get_loss(self, output_anchors, output_positives, output_negatives, B, loss_type):
        L = output_anchors.size(-1)

        if (loss_type=='triplet'):
            output_anchors = output_anchors.unsqueeze(1).expand_as(output_negatives).contiguous().view(-1, L)
            output_positives = output_positives.unsqueeze(1).expand_as(output_negatives).contiguous().view(-1, L)
            output_negatives = output_negatives.contiguous().view(-1, L)
            loss = F.triplet_margin_loss(output_anchors, output_positives, output_negatives,
                                            margin=self.margin, p=2, reduction='mean')

        elif (loss_type=='sare_joint'):
            dist_pos = torch.mm(output_anchors, output_positives.transpose(0,1)) # B*B
            dist_pos = dist_pos.diagonal(0)
            dist_pos = dist_pos.view(B, 1)

            output_anchors = output_anchors.unsqueeze(1).expand_as(output_negatives).contiguous().view(-1, L)
            output_negatives = output_negatives.contiguous().view(-1, L)
            dist_neg = torch.mm(output_anchors, output_negatives.transpose(0,1)) # B*B
            dist_neg = dist_neg.diagonal(0)
            dist_neg = dist_neg.view(B, -1)

            # joint optimize
            dist = torch.cat((dist_pos, dist_neg), 1)/self.temp[0]
            dist = F.log_softmax(dist, 1)
            loss = (- dist[:, 0]).mean()

        elif (loss_type=='sare_ind'):
            dist_pos = torch.mm(output_anchors, output_positives.transpose(0,1)) # B*B
            dist_pos = dist_pos.diagonal(0)
            dist_pos = dist_pos.view(B, 1)

            output_anchors = output_anchors.unsqueeze(1).expand_as(output_negatives).contiguous().view(-1, L)
            output_negatives = output_negatives.contiguous().view(-1, L)
            dist_neg = torch.mm(output_anchors, output_negatives.transpose(0,1)) # B*B
            dist_neg = dist_neg.diagonal(0)

            dist_neg = dist_neg.view(B, -1)

            # indivial optimize
            dist_neg = dist_neg.unsqueeze(2)
            dist_pos = dist_pos.view(B, 1, 1).expand_as(dist_neg)
            dist = torch.cat((dist_pos, dist_neg), 2).view(-1, 2)/self.temp[0]
            dist = F.log_softmax(dist, 1)
            loss = (- dist[:, 0]).mean()

        else:
            assert ("Unknown loss function")

        return loss
Пример #29
0
    def anticipation_loss(self, frame_feats, lstm_feats, batch):
        B = frame_feats.shape[0]
        T = lstm_feats.shape[1]

        positive, negative = batch['positive'], batch['negative']
        target, length = batch['verb'], batch['length']

        # select the active frame from the clip
        lstm_preds = self.fc(lstm_feats)  # (B, max_L, #classes)
        lstm_preds = lstm_preds.view(B * T, -1)
        target_flat = target.unsqueeze(1).expand(target.shape[0],
                                                 T).contiguous().view(-1)
        pred_scores = -F.cross_entropy(
            lstm_preds, target_flat, reduction='none').view(B, T)

        _, frame_idx = pred_scores.max(1)
        frame_idx = torch.min(frame_idx,
                              length - 1)  # don't select a padding frame!
        active_feats = frame_feats[torch.arange(B),
                                   frame_idx]  # (B, 256, 28, 28)
        active_pooled = self.pool(active_feats).view(B, -1)

        def embed(x):
            pred_frame = self.project(self.backbone(x))
            pooled = self.pool(pred_frame).view(B, -1)
            return pooled

        positive_pooled = embed(positive)

        _, (hn,
            cn) = self.rnn(positive_pooled.unsqueeze(1),
                           self.get_hidden_state(B, positive_pooled.device))
        preds = self.fc(hn[-1])
        aux_loss = F.cross_entropy(preds, target, reduction='none')

        if self.ant_loss == 'mse':
            ant_loss = 0.1 * ((positive_pooled - active_pooled)**2).mean(1)
        elif self.ant_loss == 'triplet':
            negative_pooled = self.backbone(negative)
            negative_pooled = self.pool(negative_pooled).view(B, -1)
            anc, pos, neg = F.normalize(positive_pooled, 2), F.normalize(
                active_pooled, 2), F.normalize(negative_pooled, 2)
            ant_loss = F.triplet_margin_loss(anc,
                                             pos,
                                             neg,
                                             margin=0.5,
                                             reduction='none')

        return {'ant_loss': ant_loss, 'aux_loss': aux_loss}
Пример #30
0
def train_epoch(net,
                dset,
                optimizer,
                batch_size,
                epoch_index,
                out_dir,
                log=None):

    gen_triplets(dset)
    net.train()

    batch_num = dset.num_triplets // batch_size

    pbar = tqdm(range(batch_num))
    for batch_idx in pbar:
        batch_start = batch_size * batch_idx

        patches = get_batch(dset, batch_start, batch_size)
        pos_a, pos_b, neg = tuple(wrap_torch(p) for p in patches)

        # output loss on descriptors
        loss = F.triplet_margin_loss(
            net(pos_a),
            net(pos_b),
            net(neg),
            margin=LOSS_MARGIN,
            swap=LOSS_ANCHORSWAP,
        )

        # compute gradient and update weights
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        learn_rate_decay(optimizer)

        log.write('loss', loss.data[0])
        log.advance_time()

        if batch_idx % 100 == 0:
            pbar.set_description(
                'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch_index, batch_start, dset.num_triplets,
                    100. * batch_idx / batch_num, loss.data[0]))

    chkpt_file = os.path.join(out_dir, CHECKPOINT_FORMAT.format(n=epoch_index))
    save_weights(net, chkpt_file, extra_attrs=dict(epoch=epoch_index))