Пример #1
0
def hardsquaremax(input: Tensor) -> Tensor:
    x = input.clone()
    m = torch.sqrt(torch.sum((torch.pow(input, 2)), dim=1, keepdim=True))
    for idx, sum_i in enumerate(m):
        if sum_i == 0:
            m[idx] = 1
            x[idx][x[idx] == 0] = 1
    s = x.add(m) / (2 * m)
    output = s / torch.sum(s, dim=1, keepdim=True)
    return output
    def forward(self, input:Tensor)->Tuple[Tensor, Optional[List[Tensor]]]:
        # TEST: Would not multipling by omega_0 during initialization help performance or multiplying by omega_0 for more layers?
        input:Tensor = input.clone().detach().requires_grad_(True)

        if self.intermediate_output:
            intermediate_output:List[Tensor] = []
            for weight, bias in self.layer_parameters[:-1]:
                input = F.linear(input, weight, bias).sin()
                intermediate_output.append(input.clone())
            input = F.linear(input, self.layer_parameters[-1][0], self.layer_parameters[-1][1])
            if self.linear_output:
                return input, intermediate_output
            return input.sin(), intermediate_output

        for weight, bias in self.layer_parameters[:-1]:
            input = F.linear(input, weight, bias).sin()
        if self.linear_output:
            return F.linear(input, self.layer_parameters[-1][0], self.layer_parameters[-1][1]), None
        return F.linear(input, self.layer_parameters[-1][0], self.layer_parameters[-1][1]).sin(), None
Пример #3
0
def hardmax(input: Tensor) -> Tensor:
    r"""hardmax(input) -> Tensor

  Applies hardmax function element-wise.
  Elements will be probability distributions that sum to 1
  and in such a way, that makes it possible to avoid unnecessary
  non-linearity effect typical to the Softmax procedure.

  Args:
    input (Tensor): the input tensor.

  Returns:
    A tensor of the same shape as input.
  """

    x = input.clone()
    m = torch.sum(torch.abs(input), dim=1, keepdim=True)
    for idx, sum_i in enumerate(m):
        if sum_i == 0:
            m[idx] = 1
            x[idx][x[idx] == 0] = 1
    s = x.add(m) / (2 * m)
    output = s / torch.sum(s, dim=1, keepdim=True)
    return output