Пример #1
0
 def test_histogram_doane(self):
     self.assertTrue(
         compare_proto(
             summary.histogram('dummy',
                               np.random.rand(1024),
                               bins='doane',
                               max_bins=5), self))
Пример #2
0
 def test_histogram_doane(self):
     self.assertTrue(
         compare_proto(
             summary.histogram('dummy',
                               tensor_N(shape=(1024, )),
                               bins='doane',
                               max_bins=5), self))
Пример #3
0
    def add_histogram(self, tag, values, global_step=None, bins='tensorflow', walltime=None):
        """Add histogram to summary.

        Args:
            tag (string): Data identifier
            values (torch.Tensor, numpy.array, or string/blobname): Values to build histogram
            global_step (int): Global step value to record
            bins (string): One of {'tensorflow','auto', 'fd', ...}. This determines how the bins are made. You can find
              other options in: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event

        Examples::

            from torch.utils.tensorboard import SummaryWriter
            import numpy as np
            writer = SummaryWriter()
            for i in range(10):
                x = np.random.random(1000)
                writer.add_histogram('distribution centers', x + i, i)
            writer.close()

        Expected result:

        .. image:: _static/img/tensorboard/add_histogram.png
           :scale: 50 %

        """


        if isinstance(bins, six.string_types) and bins == 'tensorflow':
            bins = self.default_bins
        self._get_file_writer().add_summary(
            histogram(tag, values, bins, max_bins=100), global_step, walltime)
Пример #4
0
 def add_histogram(self,
                   tag,
                   values,
                   global_step=None,
                   bins='tensorflow',
                   walltime=None,
                   max_bins=None):
     torch._C._log_api_usage_once("tensorboard.logging.add_histogram")
     if self._check_caffe2_blob(values):
         values = workspace.FetchBlob(values)
     if isinstance(bins, six.string_types) and bins == 'tensorflow':
         bins = self.default_bins
     self._get_file_writer().add_summary(
         histogram(tag, values, bins, max_bins=max_bins), global_step,
         walltime)
Пример #5
0
 def test_empty_input(self):
     with self.assertRaises(Exception) as e_info:
         summary.histogram('dummy', np.ndarray(0), 'tensorflow')
Пример #6
0
 def test_list_input(self):
     with self.assertRaises(Exception) as e_info:
         summary.histogram('dummy', [1, 3, 4, 5, 6], 'tensorflow')
Пример #7
0
 def test_empty_input(self):
     print('expect error here:')
     with self.assertRaises(Exception) as e_info:
         summary.histogram('dummy', np.ndarray(0), 'tensorflow')