def __init__(self, loc, covariance_matrix=None, precision_matrix=None, scale_tril=None, validate_args=None):
        if loc.dim() < 1:
            raise ValueError("loc must be at least one-dimensional.")
        if (covariance_matrix is not None) + (scale_tril is not None) + (precision_matrix is not None) != 1:
            raise ValueError("Exactly one of covariance_matrix or precision_matrix or scale_tril may be specified.")

        if scale_tril is not None:
            if scale_tril.dim() < 2:
                raise ValueError("scale_tril matrix must be at least two-dimensional, "
                                 "with optional leading batch dimensions")
            batch_shape = torch.broadcast_shapes(scale_tril.shape[:-2], loc.shape[:-1])
            self.scale_tril = scale_tril.expand(batch_shape + (-1, -1))
        elif covariance_matrix is not None:
            if covariance_matrix.dim() < 2:
                raise ValueError("covariance_matrix must be at least two-dimensional, "
                                 "with optional leading batch dimensions")
            batch_shape = torch.broadcast_shapes(covariance_matrix.shape[:-2], loc.shape[:-1])
            self.covariance_matrix = covariance_matrix.expand(batch_shape + (-1, -1))
        else:
            if precision_matrix.dim() < 2:
                raise ValueError("precision_matrix must be at least two-dimensional, "
                                 "with optional leading batch dimensions")
            batch_shape = torch.broadcast_shapes(precision_matrix.shape[:-2], loc.shape[:-1])
            self.precision_matrix = precision_matrix.expand(batch_shape + (-1, -1))
        self.loc = loc.expand(batch_shape + (-1,))

        event_shape = self.loc.shape[-1:]
        super(MultivariateNormal, self).__init__(batch_shape, event_shape, validate_args=validate_args)

        if scale_tril is not None:
            self._unbroadcasted_scale_tril = scale_tril
        elif covariance_matrix is not None:
            self._unbroadcasted_scale_tril = torch.cholesky(covariance_matrix)
        else:  # precision_matrix is not None
            self._unbroadcasted_scale_tril = _precision_to_scale_tril(precision_matrix)
Пример #2
0
def meta_cdist_forward(x1, x2, p, compute_mode):
    check(
        x1.dim() >= 2,
        lambda: f"cdist only supports at least 2D tensors, X1 got: {x1.dim()}D",
    )
    check(
        x2.dim() >= 2,
        lambda: f"cdist only supports at least 2D tensors, X2 got: {x2.dim()}D",
    )
    check(
        x1.size(-1) == x2.size(-1),
        lambda: f"X1 and X2 must have the same number of columns. X1: {x1.size(-1)} X2: {x2.size(-1)}",
    )
    check(
        utils.is_float_dtype(x1.dtype),
        lambda: "cdist only supports floating-point dtypes, X1 got: {x1.dtype}",
    )
    check(
        utils.is_float_dtype(x2.dtype),
        lambda: "cdist only supports floating-point dtypes, X2 got: {x2.dtype}",
    )
    check(p >= 0, lambda: "cdist only supports non-negative p values")
    check(
        compute_mode >= 0 and compute_mode <= 2,
        lambda: f"possible modes: 0, 1, 2, but was: {compute_mode}",
    )
    r1 = x1.size(-2)
    r2 = x2.size(-2)
    batch_tensor1 = x1.shape[:-2]
    batch_tensor2 = x2.shape[:-2]
    output_shape = list(torch.broadcast_shapes(batch_tensor1, batch_tensor2))
    output_shape.extend([r1, r2])
    return x1.new_empty(output_shape)
Пример #3
0
def broadcast_except(*tensors: Tensor, dim=-1):
    shape = broadcast_shapes(*(t.select(dim, 0).shape for t in tensors))
    return [
        t.expand(*shape[:t.ndim + dim + 1], t.shape[dim],
                 *shape[t.ndim + dim + 1:])
        for t in pad_dims(*tensors, ndim=len(shape) + 1)
    ]
Пример #4
0
    def __init__(self,
                 df: Union[torch.Tensor, Number],
                 covariance_matrix: torch.Tensor = None,
                 precision_matrix: torch.Tensor = None,
                 scale_tril: torch.Tensor = None,
                 validate_args=None):
        assert (covariance_matrix is not None) + (scale_tril is not None) + (precision_matrix is not None) == 1, \
            "Exactly one of covariance_matrix or precision_matrix or scale_tril may be specified."

        param = next(p for p in (covariance_matrix, precision_matrix, scale_tril) if p is not None)

        if param.dim() < 2:
            raise ValueError("scale_tril must be at least two-dimensional, with optional leading batch dimensions")

        if isinstance(df, Number):
            batch_shape = torch.Size(param.shape[:-2])
            self.df = torch.tensor(df, dtype=param.dtype, device=param.device)
        else:
            batch_shape = torch.broadcast_shapes(param.shape[:-2], df.shape)
            self.df = df.expand(batch_shape)
        event_shape = param.shape[-2:]

        if self.df.le(event_shape[-1] - 1).any():
            raise ValueError(f"Value of df={df} expected to be greater than ndim - 1 = {event_shape[-1]-1}.")

        if scale_tril is not None:
            self.scale_tril = param.expand(batch_shape + (-1, -1))
        elif covariance_matrix is not None:
            self.covariance_matrix = param.expand(batch_shape + (-1, -1))
        elif precision_matrix is not None:
            self.precision_matrix = param.expand(batch_shape + (-1, -1))

        self.arg_constraints['df'] = constraints.greater_than(event_shape[-1] - 1)
        if self.df.lt(event_shape[-1]).any():
            warnings.warn("Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim.")

        super(Wishart, self).__init__(batch_shape, event_shape, validate_args=validate_args)
        self._batch_dims = [-(x + 1) for x in range(len(self._batch_shape))]

        if scale_tril is not None:
            self._unbroadcasted_scale_tril = scale_tril
        elif covariance_matrix is not None:
            self._unbroadcasted_scale_tril = torch.linalg.cholesky(covariance_matrix)
        else:  # precision_matrix is not None
            self._unbroadcasted_scale_tril = _precision_to_scale_tril(precision_matrix)

        # Chi2 distribution is needed for Bartlett decomposition sampling
        self._dist_chi2 = torch.distributions.chi2.Chi2(
            df=(
                self.df.unsqueeze(-1)
                - torch.arange(
                    self._event_shape[-1],
                    dtype=self._unbroadcasted_scale_tril.dtype,
                    device=self._unbroadcasted_scale_tril.device,
                ).expand(batch_shape + (-1,))
            )
        )
Пример #5
0
def broadcastable(*shapes) -> bool:
    r"""Returns whether `shapes` are broadcastable.

    Example:
        >>> x = torch.rand(3, 2, 1)
        >>> y = torch.rand(1, 2, 3)
        >>> z = torch.rand(2, 2, 2)
        >>> broadcastable(x.shape, y.shape)
        True
        >>> broadcastable(y.shape, z.shape)
        False
    """

    try:
        torch.broadcast_shapes(*shapes)
    except RuntimeError as e:
        return False
    else:
        return True
Пример #6
0
 def _dense_unflatten(self, flat_samples: torch.Tensor) -> Dict[str, torch.Tensor]:
     # Convert a single flattened sample to a dict of shaped samples.
     sample_shape = flat_samples.shape[:-1]
     samples = {}
     pos = 0
     for d, (batch_shape, event_shape) in self._dense_shapes.items():
         end = pos + (batch_shape + event_shape).numel()
         flat_sample = flat_samples[..., pos:end]
         pos = end
         # Assumes sample shapes are left of batch shapes.
         samples[d] = flat_sample.reshape(
             torch.broadcast_shapes(sample_shape, batch_shape) + event_shape
         )
     return samples
Пример #7
0
def broadcast_gather(input, dim, index, sparse_grad=False, index_ndim=1):
    """
    input: Size(batch_shape..., N, event_shape...)
    index: Size(batch_shape..., index_shape...)
       ->: Size(batch_shape..., index_shape..., event_shape...)
    """
    index_shape = index.shape[-index_ndim:]
    index = index.flatten(-index_ndim)
    batch_shape = broadcast_shapes(input.shape[:dim], index.shape[:-1])
    input = input.expand(*batch_shape, *input.shape[dim:])
    index = index.expand(*batch_shape, index.shape[-1])
    return torch.gather(
        input,
        dim,
        index.reshape(*index.shape,
                      *(input.ndim - index.ndim) *
                      (1, )).expand(*index.shape, *input.shape[index.ndim:])
        if input.ndim > index.ndim else index,
        sparse_grad=sparse_grad).reshape(*index.shape[:-1], *index_shape,
                                         *input.shape[dim % input.ndim + 1:])
Пример #8
0
def _masked_observe(name, fn, obs, obs_mask, *args, **kwargs):
    # Split into two auxiliary sample sites.
    with poutine.mask(mask=obs_mask):
        observed = sample(f"{name}_observed", fn, *args, **kwargs, obs=obs)
    with poutine.mask(mask=~obs_mask):
        unobserved = sample(f"{name}_unobserved", fn, *args, **kwargs)

    # Interleave observed and unobserved events.
    shape = obs_mask.shape + (1, ) * fn.event_dim
    batch_mask = obs_mask.reshape(shape)
    try:
        value = torch.where(batch_mask, observed, unobserved)
    except RuntimeError as e:
        if "must match the size of tensor" in str(e):
            shape = torch.broadcast_shapes(observed.shape, unobserved.shape)
            batch_shape = shape[:len(shape) - fn.event_dim]
            raise ValueError(
                f"Invalid obs_mask shape {tuple(obs_mask.shape)}; should be "
                f"broadcastable to batch_shape = {tuple(batch_shape)}") from e
        raise
    return deterministic(name, value)
Пример #9
0
    def _unpack_latent(self, latent):
        """
        Unpacks a packed latent tensor, iterating over tuples of the form::

            (site, unconstrained_value)
        """
        batch_shape = latent.shape[:
                                   -1]  # for plates outside of _setup_prototype, e.g. parallel particles
        pos = 0
        for name, site in self.prototype_trace.iter_stochastic_nodes():
            constrained_shape = site["value"].shape
            unconstrained_shape = self._unconstrained_shapes[name]
            size = _product(unconstrained_shape)
            event_dim = (site["fn"].event_dim + len(unconstrained_shape) -
                         len(constrained_shape))
            unconstrained_shape = torch.broadcast_shapes(
                unconstrained_shape, batch_shape + (1, ) * event_dim)
            unconstrained_value = latent[..., pos:pos +
                                         size].view(unconstrained_shape)
            yield site, unconstrained_value
            pos += size
        if not torch._C._get_tracing_state():
            assert pos == latent.size(-1)
Пример #10
0
    def __init__(self,
                 base_dist: TorchDistribution,
                 skewness,
                 validate_args=None):
        assert (
            base_dist.event_shape == skewness.shape[-1:]
        ), "Sine Skewing is only valid with a skewness parameter for each dimension of `base_dist.event_shape`."

        if (skewness.abs().sum(-1) > 1.0).any():
            warnings.warn("Total skewness weight shouldn't exceed one.",
                          UserWarning)

        batch_shape = broadcast_shapes(base_dist.batch_shape,
                                       skewness.shape[:-1])
        event_shape = skewness.shape[-1:]
        self.skewness = skewness.broadcast_to(batch_shape + event_shape)
        self.base_dist = base_dist.expand(batch_shape)
        super().__init__(batch_shape, event_shape, validate_args=validate_args)

        if self._validate_args and base_dist.mean.device != skewness.device:
            raise ValueError(
                f"base_density: {base_dist.__class__.__name__} and SineSkewed "
                f"must be on same device.")
Пример #11
0
def broadcast_shape(shape_a: Tuple[int, ...],
                    shape_b: Tuple[int, ...]) -> Tuple[int, ...]:
    """
    Infers, if possible, the broadcast output shape of two operands a and b. Inspired by stackoverflow post:
    https://stackoverflow.com/questions/24743753/test-if-an-array-is-broadcastable-to-a-shape

    Parameters
    ----------
    shape_a : Tuple[int,...]
        Shape of first operand
    shape_b : Tuple[int,...]
        Shape of second operand

    Raises
    -------
    ValueError
        If the two shapes cannot be broadcast.

    Examples
    --------
    >>> import heat as ht
    >>> ht.core.stride_tricks.broadcast_shape((5,4),(4,))
    (5, 4)
    >>> ht.core.stride_tricks.broadcast_shape((1,100,1),(10,1,5))
    (10, 100, 5)
    >>> ht.core.stride_tricks.broadcast_shape((8,1,6,1),(7,1,5,))
    (8,7,6,5))
    >>> ht.core.stride_tricks.broadcast_shape((2,1),(8,4,3))
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "heat/core/stride_tricks.py", line 42, in broadcast_shape
        "operands could not be broadcast, input shapes {} {}".format(shape_a, shape_b)
    ValueError: operands could not be broadcast, input shapes (2, 1) (8, 4, 3)
    """
    try:
        resulting_shape = torch.broadcast_shapes(shape_a, shape_b)
    except AttributeError:  # torch < 1.8
        it = itertools.zip_longest(shape_a[::-1], shape_b[::-1], fillvalue=1)
        resulting_shape = max(len(shape_a), len(shape_b)) * [None]
        for i, (a, b) in enumerate(it):
            if a == 0 and b == 1 or b == 0 and a == 1:
                resulting_shape[i] = 0
            elif a == 1 or b == 1 or a == b:
                resulting_shape[i] = max(a, b)
            else:
                raise ValueError(
                    "operands could not be broadcast, input shapes {} {}".
                    format(shape_a, shape_b))
        return tuple(resulting_shape[::-1])
    except TypeError:
        raise TypeError("operand 1 must be tuple of ints, not {}".format(
            type(shape_a)))
    except NameError:
        raise TypeError(
            "operands must be tuples of ints, not {} and {}".format(
                shape_a, shape_b))
    except RuntimeError:
        raise ValueError(
            "operands could not be broadcast, input shapes {} {}".format(
                shape_a, shape_b))

    return tuple(resulting_shape)
Пример #12
0
    def __init__(
        self,
        height: torch.Tensor,
        width: torch.Tensor,
        x: torch.Tensor,
        y: torch.Tensor,
        target_locs: torch.Tensor,
        background: torch.Tensor,
        gain: torch.Tensor,
        offset_samples: torch.Tensor,
        offset_logits: torch.Tensor,
        P: int,
        m: torch.Tensor = None,
        alpha: torch.Tensor = None,
        use_pykeops: bool = True,
        validate_args=None,
    ):

        # shapes for cosmos and crosstalk models
        self.height = height  # (N, F, C, K) or (N, F, Q, K)
        self.width = width  # (N, F, C, K) or (N, F, Q, K)
        self.x = x
        self.y = y
        self.target_locs = target_locs  # (N, F, C, 2)
        self.m = m  # (N, F, C, K) or (N, F, Q, K)
        self.background = background[..., None, None]  # (N, F, C, P, P)
        if alpha is not None:
            C = alpha.shape[-1]
            self.gain = gain[..., None, None, None]  # (1, K, P, P)
            self.height = (self.height.unsqueeze(-2) * alpha[..., None]
                           )  # (N, F, Q, C, K)
            self.width = self.width.unsqueeze(-2)  # (N, F, Q, 1, K)
            self.x = self.x.unsqueeze(-2)  # (N, F, Q, 1, K)
            self.y = self.y.unsqueeze(-2)  # (N, F, Q, 1, K)
            self.m = self.m.unsqueeze(-2)  # (N, F, Q, 1, K)
            self.target_locs = self.target_locs.unsqueeze(
                -3)  # (N, F, 1, C, 2)
        else:
            self.gain = gain[..., None, None]  # (1, P, P)
        self.alpha = alpha
        self.rate = 1 / self.gain

        self.offset_samples = offset_samples
        self.offset_logits = offset_logits
        self.P = P
        self.use_pykeops = use_pykeops
        if self.use_pykeops:
            device = self.target_locs.device.type
            self.device_pykeops = "GPU" if device == "cuda" else "CPU"

        # calculate batch shape
        batch_shape = torch.broadcast_shapes(
            height.shape, width.shape, x.shape,
            y.shape)  # (N, F, C, K) or (N, F, Q, K)
        if m is not None:
            batch_shape = torch.broadcast_shapes(
                batch_shape, m.shape)  # (N, F, C, K) or (N, F, Q, K)

        event_shape = torch.Size([P, P])  # (P, P)
        bg_shape = background.shape  # (N, F, C)
        target_shape = target_locs.shape[:-1]  # (N, F, C)
        # remove K dim
        batch_shape = batch_shape[:-1]  # (N, F, C) or (N, F, Q)
        if alpha is not None:
            # remove Q dim
            batch_shape = batch_shape[:-1]  # (N, F)
            # add C dim
            event_shape = (C, ) + event_shape  # (C, P, P)
            # remove C dim
            bg_shape = bg_shape[:-1]  # (N, F)
            target_shape = target_shape[:-1]  # (N, F)
        batch_shape = torch.broadcast_shapes(
            batch_shape, bg_shape, target_shape)  # (N, F, C) or (N, F)
        super().__init__(batch_shape, event_shape, validate_args=validate_args)
Пример #13
0
def broadcast_left(*tensors, ndim):
    shape = broadcast_shapes(*(t.shape[:ndim] for t in tensors))
    return (t.expand(*shape, *t.shape[ndim:]) for t in tensors)
Пример #14
0
 def forward_shape(self, shape):
     return torch.broadcast_shapes(shape, getattr(self.exponent, "shape",
                                                  ()))
Пример #15
0
 def inverse_shape(self, shape):
     return torch.broadcast_shapes(shape, getattr(self.exponent, "shape",
                                                  ()))
Пример #16
0
 def inverse_shape(self, shape):
     return torch.broadcast_shapes(shape, getattr(self.loc, "shape", ()),
                                   getattr(self.scale, "shape", ()))
Пример #17
0
    def get_deltas(self, save_params=None):
        deltas = {}
        aux_values = {}
        compute_density = poutine.get_mask() is not False
        for name, site in self._sorted_sites:
            if save_params is not None and name not in save_params:
                continue

            # Sample zero-mean blockwise independent Delta/Normal/MVN.
            log_density = 0.0
            loc = deep_getattr(self.locs, name)
            zero = torch.zeros_like(loc)
            conditional = self.conditionals[name]
            if callable(conditional):
                aux_value = deep_getattr(self.conds, name)()
            elif conditional == "delta":
                aux_value = zero
            elif conditional == "normal":
                aux_value = pyro.sample(
                    name + "_aux",
                    dist.Normal(zero, 1).to_event(1),
                    infer={"is_auxiliary": True},
                )
                scale = deep_getattr(self.scales, name)
                aux_value = aux_value * scale
                if compute_density:
                    log_density = (-scale.log()).expand_as(aux_value)
            elif conditional == "mvn":
                # This overparametrizes by learning (scale,scale_tril),
                # enabling faster learning of the more-global scale parameter.
                aux_value = pyro.sample(
                    name + "_aux",
                    dist.Normal(zero, 1).to_event(1),
                    infer={"is_auxiliary": True},
                )
                scale = deep_getattr(self.scales, name)
                scale_tril = deep_getattr(self.scale_trils, name)
                aux_value = aux_value @ scale_tril.T * scale
                if compute_density:
                    log_density = (
                        -scale_tril.diagonal(dim1=-2, dim2=-1).log() -
                        scale.log()).expand_as(aux_value)
            else:
                raise ValueError(
                    f"Unsupported conditional type: {conditional}")

            # Accumulate upstream dependencies.
            # Note: by accumulating upstream dependencies before updating the
            # aux_values dict, we encode a block-sparse structure of the
            # precision matrix; if we had instead accumulated after updating
            # aux_values, we would encode a block-sparse structure of the
            # covariance matrix.
            # Note: these shear transforms have no effect on the Jacobian
            # determinant, and can therefore be excluded from the log_density
            # computation below, even for nonlinear dep().
            deps = deep_getattr(self.deps, name)
            for upstream in self.dependencies.get(name, {}):
                dep = deep_getattr(deps, upstream)
                aux_value = aux_value + dep(aux_values[upstream])
            aux_values[name] = aux_value

            # Shift by loc and reshape.
            batch_shape = torch.broadcast_shapes(aux_value.shape[:-1],
                                                 self._batch_shapes[name])
            unconstrained = (
                aux_value +
                loc).reshape(batch_shape +
                             self._unconstrained_event_shapes[name])
            if not is_identically_zero(log_density):
                log_density = log_density.reshape(batch_shape + (-1, )).sum(-1)

            # Transform to constrained space.
            transform = biject_to(site["fn"].support)
            value = transform(unconstrained)
            if compute_density and conditional != "delta":
                assert transform.codomain.event_dim == site["fn"].event_dim
                log_density = log_density + transform.inv.log_abs_det_jacobian(
                    value, unconstrained)

            # Create a reparametrized Delta distribution.
            deltas[name] = dist.Delta(value, log_density, site["fn"].event_dim)

        return deltas