def forward(self, x): '''input: (batch_size, mic_channels, time_steps, mel_bins)''' for conv_cnt in range(len(self.conv_block_list)): x = self.conv_block_list[conv_cnt](x) '''(batch_size, feature_maps, time_steps, mel_bins)''' x = x.transpose(1, 2).contiguous() x = x.view(x.shape[0], x.shape[1], -1).contiguous() ''' (batch_size, time_steps, feature_maps):''' (x, _) = self.gru(x) x = torch.tanh(x) x = x[:, :, x.shape[-1]//2:] * x[:, :, :x.shape[-1]//2] '''(batch_size, time_steps, feature_maps)''' if self.attn is not None: x = self.attn.forward(x, x, x) # out - batch x hidden x seq x = torch.tanh(x) x_rnn = x for fnn_cnt in range(len(self.fnn_list)-1): x = torch.relu_(self.fnn_list[fnn_cnt](x)) doa = torch.tanh(self.fnn_list[-1](x)) '''(batch_size, time_steps, label_dim)''' if self.use_hnet and self.use_activity_out: for fnn_cnt in range(len(self.fnn_act_list)-1): x_rnn = torch.relu_(self.fnn_act_list[fnn_cnt](x_rnn)) activity = torch.tanh(self.fnn_act_list[-1](x_rnn)) return doa, activity else: return doa
def test_batch_mm(n: int, use_t1: bool): T1 = torch.zeros((n, n)) T2 = torch.zeros((n, n)) T3 = torch.zeros((n, n)) T4 = torch.zeros((n, n)) T5 = torch.zeros((n, n)) T6 = torch.zeros((n, n)) T7 = torch.zeros((n, n)) T8 = torch.zeros((n, n)) T9 = torch.zeros((n, n)) T10 = torch.zeros((n, n)) if use_t1: torch.relu_(T1) return ( torch.mm(T1, T2) + torch.mm(T3, T4) + torch.mm(T5, T6) + torch.mm(T7, T8) + torch.mm(T9, T10) ) else: return ( torch.mm(T2, T3) + torch.mm(T4, T5) + torch.mm(T6, T7) + torch.mm(T8, T9) )
def test_batch_mm(n: int): A = torch.zeros((n, n)) T1 = torch.zeros((n, n)) T2 = torch.zeros((n, n)) T3 = torch.zeros((n, n)) T4 = torch.zeros((n, n)) T5 = torch.zeros((n, n)) T6 = torch.zeros((n, n)) T7 = torch.zeros((n, n)) T8 = torch.zeros((n, n)) T9 = torch.zeros((n, n)) T10 = torch.zeros((n, n)) torch.relu_(A) result = {} result["T1"] = torch.mm(A, T1) result["T2"] = torch.mm(A, T2) result["T3"] = torch.mm(A, T3) result["T4"] = torch.mm(A, T4) result["T5"] = torch.mm(A, T5) result["T6"] = torch.mm(A, T6) result["T7"] = torch.mm(A, T7) result["T8"] = torch.mm(A, T8) result["T9"] = torch.mm(A, T9) result["T10"] = torch.mm(A, T10) return result
def test_batch_mm(n: int): T1 = torch.zeros((n, n)) T2 = torch.zeros((n, n)) T3 = torch.zeros((n, n)) T4 = torch.zeros((n, n)) T5 = torch.zeros((n, n)) T6 = torch.zeros((n, n)) T7 = torch.zeros((n, n)) T8 = torch.zeros((n, n)) T9 = torch.zeros((n, n)) T10 = torch.zeros((n, n)) torch.relu_(T1) result = {} result["no_mutated_parameters"] = ( torch.mm(T2, T3) + torch.mm(T4, T5) + torch.mm(T6, T7) + torch.mm(T8, T9) ) result["all_parameters"] = ( torch.mm(T1, T2) + torch.mm(T3, T4) + torch.mm(T5, T6) + torch.mm(T7, T8) + torch.mm(T9, T10) ) return result
def jojo_0(self, input_vars_12, var_220, input_vars_14, input_vars_11, input_vars_13): var_221 = torch.relu_(var_220) var_239 = torch._convolution(var_221, input_vars_11, input_vars_12, [ 1, 1, ], [ 1, 1, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) var_240 = torch.relu_(var_239) var_258 = torch._convolution(var_240, input_vars_13, input_vars_14, [ 1, 1, ], [ 1, 1, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) return var_258
def forward(self, query_users, target_items, auxiliary_items=None): only_target = False if auxiliary_items is None: only_target = True auxiliary_items = [ random.choice(self.source_ratings[user_id.item()]) if len( self.source_ratings[user_id.item()]) > 0 else self.item_padding_idx for user_id in query_users[0]] auxiliary_items = (torch.tensor(auxiliary_items, dtype=torch.long, device=query_users[0].device),) query_users = list(map(lambda x: x.expand(target_items[0].size(0)), query_users)) auxiliary_items = list(map(lambda x: x.expand(target_items[0].size(0)), auxiliary_items)) query_users = self.useritem_embeds(*query_users, is_user=True) target_items, auxiliary_items = self.useritem_embeds(*target_items, is_user=False), self.useritem_embeds( *auxiliary_items, is_user=False) target_x = torch.cat((*query_users, *target_items), dim=1) auxiliary_x = torch.cat((*query_users, *auxiliary_items), dim=1) for target_layer, auxiliary_layer, transfer_layer in zip(self.target_layers, self.auxiliary_layers, self.transfer_layers): new_target_x = target_layer(target_x) + transfer_layer(auxiliary_x) new_auxiliary_x = auxiliary_layer(auxiliary_x) + transfer_layer(target_x) target_x, auxiliary_x = new_target_x, new_auxiliary_x target_x, auxiliary_x = torch.relu_(target_x), torch.relu_(auxiliary_x) if only_target: return self.target_output(target_x).squeeze(-1) else: return self.target_output(target_x).squeeze(-1), self.auxiliary_output(auxiliary_x).squeeze(-1)
def forward(self, x): # Linear layers to regress parameters # Note: cnf is the predicted variance and must always be positive x = self.conv_ops(x) x = x.flatten(start_dim=-2).mean(dim=-1) x = self.l1(x) torch.selu_(x) if self.l2_conf: cnf = self.l2_conf(x) else: cnf = [] out = self.l2_out(x) if self.ellipse_pred: # Ellipse centers should be between -1 and 1 torch.nn.functional.hardtanh_(out[:, [0, 1, 5, 6]]) # Ellipse axes should be between 0 and 1 torch.relu_(out[:, [2, 3, 7, 8]]) # Ellipse orientation should be between 0 and pi out[:, [4, 9]] = np.pi * torch.clamp(out[:, [4, 9]], 0., 1.) else: pass return out, cnf
def forward(self, inputs): x, u = inputs # state, action x = self.bn0(x) x = torch.relu_(self.linear1(x)) x = torch.relu_(self.linear2(x)) V = self.V(x) # applying linear1, linear2 on x and finally V. mu = torch.tanh(self.mu( x)) # applying linear1, linear2 on x and finally F.than(mu(x)). Q = None # calculating the advantage function if u is not None: num_outputs = mu.size(1) L = self.L(x).view(-1, num_outputs, num_outputs) L = L * self.tril_mask.expand_as(L) + torch.exp( L) * self.diag_mask.expand_as(L) P = torch.bmm(L, L.transpose(2, 1)) u_mu = (u - mu).unsqueeze(2) A = -0.5 * torch.bmm(torch.bmm(u_mu.transpose(2, 1), P), u_mu)[:, :, 0] Q = A + V return mu, Q, V
def fixed_circle_loss_clean(output, target, mask, num_classes, softplus: torch.nn.Softplus): """ output: (B, N) target: (B, X) mask: (B, N) num_classes = N loss = log(1 + \sum_i exp(s^{neg}_i) \sum_j exp(s^{pos}_j)) \gamma = 1, m = 0 """ output = output.float() # seq_len = output.size(1) target_mask = (target == -1) target[target_mask] = num_classes one_hot_target = F.one_hot(target, num_classes + 1) one_hot_target = one_hot_target.sum(dim=1) one_hot_target = one_hot_target[:, :-1].to(dtype=output.dtype) mask = mask.to(dtype=output.dtype) all_mask = (one_hot_target.sum(dim=-1) == 0) mask_for_pos = torch.clamp_max(1 - one_hot_target + mask, max=1.0) mask_for_neg = torch.clamp_max(one_hot_target + mask, max=1.0) _flag = -1e12 ap = torch.clamp_min(1 - output.detach(), min=0.) an = torch.clamp_min(output.detach(), min=0.) delta_p = 1 delta_n = 0 output = (1 - 2 * one_hot_target) * output # Positive: -1 // Negative: +1 logit_pos = ap * (delta_p + output) + mask_for_pos * _flag x = logit_pos.max(dim=-1, keepdim=True)[0].detach() x = torch.relu_(x) logit_pos = logit_pos - x # assert output_pos.size() == output.size(), (output_pos.size(), output.size()) logit_neg = an * (output - delta_n) + mask_for_neg * _flag y = logit_neg.max(dim=-1, keepdim=True)[0].detach() y = torch.relu_(y) logit_neg = logit_neg - y loss = softplus(x + y + torch.logsumexp(logit_pos, dim=-1) + torch.logsumexp(logit_neg, dim=-1)) masked_loss = loss.masked_fill(all_mask, 0.) return masked_loss
def forward(self, x): x = self.fc1(x) x = torch.relu_(x) x = self.fc2(x) x = torch.relu_(x) x = self.fc3(x) x = torch.relu_(x) return x
def jojo_20(self, input_vars_45, input_vars_44, var_848, var_799, input_vars_47, input_vars_46, input_vars_49, input_vars_43): var_850 = torch.add(var_848, var_799, alpha=1) var_851 = torch.relu_(var_850) var_870 = torch._convolution(var_851, input_vars_43, None, [2, 2, ], [1, 1, ], [1, 1, ], False, [0, 0, ], 1, False, False, True) var_875 = torch.batch_norm(var_870, input_vars_44, input_vars_45, input_vars_46, input_vars_47, False, 0.1, 1e-05, True) var_876 = torch.relu_(var_875) var_895 = torch._convolution(var_876, input_vars_49, None, [1, 1, ], [1, 1, ], [1, 1, ], False, [0, 0, ], 1, False, False, True) return var_851, var_895
def jojo_6(self, input_vars_44, input_vars_34, input_vars_37, var_459, input_vars_45, var_508, input_vars_31, input_vars_38, input_vars_41, input_vars_47, input_vars_40, input_vars_43, input_vars_33, input_vars_35, input_vars_46, input_vars_32, input_vars_39): var_510 = torch.add(var_508, var_459, alpha=1) var_511 = torch.relu_(var_510) var_530 = torch._convolution(var_511, input_vars_31, None, [ 2, 2, ], [ 1, 1, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) var_535 = torch.batch_norm(var_530, input_vars_32, input_vars_33, input_vars_34, input_vars_35, False, 0.1, 1e-05, True) var_536 = torch.relu_(var_535) var_555 = torch._convolution(var_536, input_vars_37, None, [ 1, 1, ], [ 1, 1, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) var_560 = torch.batch_norm(var_555, input_vars_38, input_vars_39, input_vars_40, input_vars_41, False, 0.1, 1e-05, True) var_579 = torch._convolution(var_511, input_vars_43, None, [ 2, 2, ], [ 0, 0, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) var_584 = torch.batch_norm(var_579, input_vars_44, input_vars_45, input_vars_46, input_vars_47, False, 0.1, 1e-05, True) return var_560, var_584
def jojo_5(self, input_vars_50, var_586, input_vars_51, input_vars_49, input_vars_57, input_vars_64, input_vars_52, input_vars_55, input_vars_61, input_vars_63, input_vars_58, input_vars_56, input_vars_53, input_vars_65, input_vars_62, input_vars_59): var_587 = torch.relu_(var_586) var_606 = torch._convolution(var_587, input_vars_49, None, [ 1, 1, ], [ 1, 1, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) var_611 = torch.batch_norm(var_606, input_vars_50, input_vars_51, input_vars_52, input_vars_53, False, 0.1, 1e-05, True) var_612 = torch.relu_(var_611) var_631 = torch._convolution(var_612, input_vars_55, None, [ 1, 1, ], [ 1, 1, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) var_636 = torch.batch_norm(var_631, input_vars_56, input_vars_57, input_vars_58, input_vars_59, False, 0.1, 1e-05, True) var_638 = torch.add(var_636, var_587, alpha=1) var_639 = torch.relu_(var_638) var_658 = torch._convolution(var_639, input_vars_61, None, [ 2, 2, ], [ 1, 1, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) var_663 = torch.batch_norm(var_658, input_vars_62, input_vars_63, input_vars_64, input_vars_65, False, 0.1, 1e-05, True) return var_663, var_639
def forward(self, x): x = x x = self.bn_0(torch.relu_(self.fc_0(x))) # x = F.dropout(x) x = self.bn_1(torch.relu_(self.fc_1(x))) # x = F.dropout(x) x = self.bn_2(torch.relu_(self.fc_2(x))) # x = F.dropout(x) return self.output(x).squeeze()
def feed_forward_fn(qp_vec): qp_dict = quant_params_vec2dict(keys, qp_vec, search_clipping) quantized_layer.update_linear_quant_params(qp_dict) # Using cloned input, required if the layer is inplace y = layer(input.clone().detach()) if getattr(quantized_layer, 'clip_half_range', False): torch.relu_(y) q_y = quantized_layer(input.clone().detach()) loss = loss_fn(y, q_y) return loss
def _compute_scales(A): """Compute optimal parameters for scaling-and-squaring algorithm. The constants used in this function are determined by the MATLAB function found in https://github.com/cetmann/pytorch_expm/blob/master/determine_frechet_scaling_constant.m """ norm = matrix_1_norm(A) max_norm = torch.max(norm) s = torch.zeros_like(norm) if A.dtype == torch.float64: if A.requires_grad: ell = { 3: 0.010813385777848, 5: 0.199806320697895, 7: 0.783460847296204, 9: 1.782448623969279, 13: 4.740307543765127} else: ell = { 3: 0.014955852179582, 5: 0.253939833006323, 7: 0.950417899616293, 9: 2.097847961257068, 13: 5.371920351148152} if max_norm >= ell[9]: m = 13 magic_number = ell[m] s = torch.relu_(torch.ceil(torch.log2_(norm / magic_number))) else: for m in [3,5,7,9]: if max_norm < ell[m]: magic_number = ell[m] # results in s = torch.tensor([0,...,0]) break elif A.dtype == torch.float32: if A.requires_grad: ell = {3: 0.308033041845330, 5: 1.482532614793145, 7: 3.248671755200478} else: ell = {3: 0.425873001692283, 5: 1.880152677804762, 7: 3.925724783138660} if max_norm >= ell[5]: m = 7 magic_number = ell[m] s = torch.relu_(torch.ceil(torch.log2_(norm / magic_number))) else: for m in [3,5]: if max_norm < ell[m]: # results in s = torch.tensor([0,...,0]) magic_number = ell[m] break return s, m
def forward(cxt, input, bias, dilations, blocksize, *weights): with torch.no_grad(): cxt.stride = 1 cxt.paddings = dilations cxt.groups = 1 cxt.dilations = dilations cxt.n_conv = len(dilations) cxt.blocksize = blocksize cxt.ndim = input.dim() - 2 if cxt.ndim == 1: conv = torch.nn.functional.conv1d elif cxt.ndim == 2: conv = torch.nn.functional.conv2d elif cxt.ndim == 3: conv = torch.nn.functional.conv3d else: raise ValueError('Only supports 1 2 or 3 dimensions') result = torch.empty(input.shape[0], input.shape[1] + blocksize * cxt.n_conv, *input.shape[2:], device=input.device) result[:, :input.shape[1]] = input result_start = input.shape[1] bias_start = 0 for i in range(cxt.n_conv): # Extract variables sub_weight = weights[i] sub_bias = bias[i * blocksize:(i + 1) * blocksize] if bias is not None else None padding = cxt.paddings[i] dilation = cxt.dilations[i] # Compute convolution sub_result = conv(result[:, :result_start], sub_weight, sub_bias, cxt.stride, padding, dilation, cxt.groups) # Apply ReLU torch.relu_(sub_result) # Update result array result[:, result_start:result_start + blocksize] = sub_result # Update steps etc result_start += blocksize bias_start += blocksize cxt.save_for_backward(bias, result, *weights) return result
def jojo_7(self, input_vars_25, var_431, input_vars_16, input_vars_13, input_vars_15, input_vars_23, input_vars_19, input_vars_21, input_vars_22, var_407, input_vars_17, input_vars_14, input_vars_20): var_432 = torch.relu_(var_431) var_451 = torch._convolution(var_432, input_vars_13, None, [ 1, 1, ], [ 1, 1, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) var_456 = torch.batch_norm(var_451, input_vars_14, input_vars_15, input_vars_16, input_vars_17, False, 0.1, 1e-05, True) var_458 = torch.add(var_456, var_407, alpha=1) var_459 = torch.relu_(var_458) var_478 = torch._convolution(var_459, input_vars_19, None, [ 1, 1, ], [ 1, 1, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) var_483 = torch.batch_norm(var_478, input_vars_20, input_vars_21, input_vars_22, input_vars_23, False, 0.1, 1e-05, True) var_484 = torch.relu_(var_483) var_503 = torch._convolution(var_484, input_vars_25, None, [ 1, 1, ], [ 1, 1, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) return var_459, var_503
def test_relu_(self): x = torch.randn((4, 5), dtype=torch.float32) * 10 x1 = x.clone().requires_grad_() x2 = x.clone().to_mkldnn().requires_grad_() y1 = torch.relu_(x1.clone()) y2 = torch.relu_(x2.clone()).to_dense() loss1 = y1.sum() loss2 = y2.sum() loss1.backward() loss2.backward() self.assertEqual(y1, y2) self.assertEqual(x1.grad, x2.grad.to_dense())
def test_batch_mm(n: int): T1 = torch.zeros((n, n)) T2 = torch.zeros((n, n)) T3 = torch.zeros((n, n)) T4 = torch.zeros((n, n)) T5 = torch.zeros((n, n)) T6 = torch.zeros((n, n)) T7 = torch.zeros((n, n)) T8 = torch.zeros((n, n)) torch.relu_(T1) result = (torch.mm(T1, T2) + torch.mm(T3, T4) + torch.mm(T5, T6) + torch.mm(T7, T8)) return result
def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]: value = self.backbone(x) if self.backbone_key is not None: value = value[self.backbone_key] features = torch.relu_(self.down_sampler(torch.relu_(value))) value = { "hm": self.head_heatmap(features), "wh": self.head_width_height(features), "reg": self.head_offset_regularizer(features), } return value
def jojo_19(self, var_851, input_vars_71, input_vars_70, input_vars_67, input_vars_55, input_vars_57, input_vars_56, var_900, input_vars_62, input_vars_65, input_vars_73, input_vars_61, input_vars_68, input_vars_63, input_vars_69, input_vars_59, input_vars_64, input_vars_58): var_919 = torch._convolution(var_851, input_vars_55, None, [2, 2, ], [0, 0, ], [1, 1, ], False, [0, 0, ], 1, False, False, True) var_924 = torch.batch_norm(var_919, input_vars_56, input_vars_57, input_vars_58, input_vars_59, False, 0.1, 1e-05, True) var_926 = torch.add(var_900, var_924, alpha=1) var_927 = torch.relu_(var_926) var_946 = torch._convolution(var_927, input_vars_61, None, [1, 1, ], [1, 1, ], [1, 1, ], False, [0, 0, ], 1, False, False, True) var_951 = torch.batch_norm(var_946, input_vars_62, input_vars_63, input_vars_64, input_vars_65, False, 0.1, 1e-05, True) var_952 = torch.relu_(var_951) var_971 = torch._convolution(var_952, input_vars_67, None, [1, 1, ], [1, 1, ], [1, 1, ], False, [0, 0, ], 1, False, False, True) var_976 = torch.batch_norm(var_971, input_vars_68, input_vars_69, input_vars_70, input_vars_71, False, 0.1, 1e-05, True) var_978 = torch.add(var_976, var_927, alpha=1) var_979 = torch.relu_(var_978) var_998 = torch._convolution(var_979, input_vars_73, None, [1, 1, ], [1, 1, ], [1, 1, ], False, [0, 0, ], 1, False, False, True) return var_979, var_998
def forward(self, x): # layer 1 h = self.conv_1(x) h = self.bn_1(h) torch.relu_(h) h = self.se_1(h) h = self.mp_1(h) # layer 2 h = self.conv_2(h) h = self.bn_2(h) torch.relu_(h) h = self.se_2(h) h = self.mp_2(h) # layer 3 h = self.conv_3(h) h = self.bn_3(h) torch.relu_(h) h = self.se_3(h) h = self.mp_3(h) # flatten h = h.view(x.shape[0], -1) # hidden h = self.dense_1(h) h = self.bn_4(h) torch.relu_(h) logits = self.dense_2(h) return logits
def sample_dose_distributions(data): original = data["A"] original_variance = data["A_var"] target = data["B"] target_variance = data["B_var"] original += torch.sqrt(original_variance) * torch.randn_like(original_variance) target += torch.sqrt(target_variance) * torch.randn_like(target_variance) torch.relu_(original) torch.relu_(target) return data
def _compute_scales(A): norm = matrix_1_norm(A) max_norm = torch.max(norm) s = torch.zeros_like(norm) if A.dtype == torch.float64: if A.requires_grad: ell = { 3: 0.010813385777848, 5: 0.199806320697895, 7: 0.783460847296204, 9: 1.782448623969279, 13: 4.740307543765127} else: ell = { 3: 0.014955852179582, 5: 0.253939833006323, 7: 0.950417899616293, 9: 2.097847961257068, 13: 5.371920351148152} if max_norm >= ell[9]: m = 13 magic_number = ell[m] s = torch.relu_(torch.ceil(torch.log2_(norm / magic_number))) else: for m in [3,5,7,9]: if max_norm < ell[m]: magic_number = ell[m] # results in s = torch.tensor([0,...,0]) break elif A.dtype == torch.float32: if A.requires_grad: ell = {3: 0.308033041845330, 5: 1.482532614793145, 7: 3.248671755200478} else: ell = {3: 0.425873001692283, 5: 1.880152677804762, 7: 3.925724783138660} if max_norm >= ell[5]: m = 7 magic_number = ell[m] s = torch.relu_(torch.ceil(torch.log2_(norm / magic_number))) else: for m in [3,5]: if max_norm < ell[m]: # results in s = torch.tensor([0,...,0]) magic_number = ell[m] break return s, m
def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, _ = q.size() sz_b, len_k, _ = k.size() sz_b, len_v, _ = v.size() residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv if mask is not None: mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x .. output, attn = self.attention(q, k, v, mask=mask) output = output.view(n_head, sz_b, len_q, d_v) output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv) if self.use_star: output = self.dropout(torch.relu_(self.fc(output))) output = self.layer_norm(output) else: output = self.dropout(self.fc(output)) output = self.layer_norm(output + residual) return output, attn
def forward(self, x): x = self.linear1(x) x = torch.relu_(x) # x = torch.sigmoid(x) x = self.linear2(x) x = torch.sigmoid(x) return x
def forward(self, input): x = torch.relu_(self.conv1(input)) x = self.conv2(x) x = self.conv3(x) if self.scaling is not None: x = self.scaling * x return x + input
def function_hook(input, *args, **kwargs): class ReLU(nn.Module): def __init__(self): super().__init__() output = torch.relu_(input.tensor(), *args, **kwargs) return forward_hook(ReLU(*args, **kwargs), (input, ), output)
def jojo_1(self, var_169, input_vars_8, input_vars_7): var_187 = torch._convolution(var_169, input_vars_7, input_vars_8, [ 1, 1, ], [ 1, 1, ], [ 1, 1, ], False, [ 0, 0, ], 1, False, False, True) var_188 = torch.relu_(var_187) var_202 = torch.max_pool2d(var_188, [ 2, 2, ], [ 2, 2, ], [ 0, 0, ], [ 1, 1, ], False) return var_202