Пример #1
0
def correlation_max(dump_list):
    correlations = correlate_dumps(dump_list)

    results = []

    for corr, idx in correlations:
        maxs = torch.abs(torch.max(corr, dim=1))
        sort, sort_idx = torch.sort(maxs, descending=True)

        corr = torch.select(corr, sort_idx)
        idx = torch.select(idx, sort_idx)

        results.append((maxs, corr, idx))
Пример #2
0
def hls_to_rgb(image: torch.Tensor) -> torch.Tensor:
    r"""Convert a HLS image to RGB.

    The image data is assumed to be in the range of (0, 1).

    Args:
        image: HLS image to be converted to RGB with shape :math:`(*, 3, H, W)`.

    Returns:
        RGB version of the image with shape :math:`(*, 3, H, W)`.

    Example:
        >>> input = torch.rand(2, 3, 4, 5)
        >>> output = hls_to_rgb(input)  # 2x3x4x5
    """
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")

    if len(image.shape) < 3 or image.shape[-3] != 3:
        raise ValueError(
            f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")

    if not torch.jit.is_scripting():
        # weird way to use globals compiling with JIT even in the code not used by JIT...
        # __setattr__ can be removed if pytorch version is > 1.6.0 and then use:
        # hls_to_rgb.HLS2RGB = hls_to_rgb.HLS2RGB.to(image.device)
        hls_to_rgb.__setattr__('HLS2RGB',
                               hls_to_rgb.HLS2RGB.to(image))  # type: ignore
        _HLS2RGB: torch.Tensor = hls_to_rgb.HLS2RGB  # type: ignore
    else:
        _HLS2RGB = torch.tensor([[[0.0]], [[8.0]], [[4.0]]],
                                device=image.device,
                                dtype=image.dtype)  # 3x1x1

    im: torch.Tensor = image.unsqueeze(-4)
    h: torch.Tensor = torch.select(im, -3, 0)
    l: torch.Tensor = torch.select(im, -3, 1)
    s: torch.Tensor = torch.select(im, -3, 2)
    h = h * (6 / math.pi)  # h * 360 / (2 * math.pi) / 30
    a = s * torch.min(l, 1.0 - l)

    # kr = (0 + h) % 12
    # kg = (8 + h) % 12
    # kb = (4 + h) % 12
    k: torch.Tensor = (h + _HLS2RGB) % 12

    # l - a * max(min(min(k - 3.0, 9.0 - k), 1), -1)
    mink = torch.min(k - 3.0, 9.0 - k)
    return torch.addcmul(l, a, mink.clamp_(min=-1.0, max=1.0), value=-1)
Пример #3
0
    def as_identity(self):
        # view_as_real and view_as_complex behavior should be like an identity
        def func(z):
            z_ = torch.view_as_complex(z)
            z_select = torch.select(z_, z_.dim() - 1, 0)
            z_select_real = torch.view_as_real(z_select)
            return z_select_real.sum()

        z = torch.randn(10, 2, 2, dtype=torch.double, requires_grad=True)
        gradcheck(func, [z])
        func(z).backward()

        z1 = z.clone().detach().requires_grad_(True)
        torch.select(z1, z1.dim() - 2, 0).sum().backward()

        self.assertEqual(z.grad, z1.grad)
Пример #4
0
def extract_map_statedict(
    m_b: Union[ALEBOGP, ModelListGP], num_outputs: int
) -> List[MutableMapping[str, Tensor]]:
    """Extract MAP statedict from the batch-mode ALEBO GP.

    The batch GP can be either a single ALEBO GP or a ModelListGP of ALEBO GPs.

    Args:
        m_b: Batch-mode GP.
        num_outputs: Number of outputs being modeled.
    """
    is_modellist = num_outputs > 1
    map_sds: List[MutableMapping[str, Tensor]] = [
        OrderedDict() for i in range(num_outputs)
    ]
    sd = m_b.state_dict()
    for k, v in sd.items():
        # Extract model index and parameter name
        if is_modellist:
            g = re.match(r"^models\.([0-9]+)\.(.*)$", k)
            if g is None:
                raise Exception(
                    "Unable to parse ModelList structure"
                )  # pragma: no cover
            model_idx = int(g.group(1))
            param_name = g.group(2)
        else:
            model_idx = 0
            param_name = k
        map_sds[model_idx][param_name] = torch.select(v, 0, 0)
    return map_sds
Пример #5
0
    def move(self, x: Tensor, es: Tensor, z: Tensor) -> Tensor:
        """
        Args:
            x: [node, batch, step, dim]
            es: [2, E]
            z: [E, batch, K]

        Return:
            x: [node, batch, step, dim], future node states
        """
        # z: [E, batch, K] -> [E, batch, step, K]
        z = z.repeat(x.size(2), 1, 1, 1).permute(1, 2, 0, 3).contiguous()
        msg, col, size = self.message(x, es)
        idx = 1 if self.skip_first else 0
        norm = len(self.msgs)
        if self.skip_first:
            norm -= 1
        msgs = sum(self.msgs[i](msg) * torch.select(z, -1, i).unsqueeze(-1) /
                   norm for i in range(idx, len(self.msgs)))
        # aggregate all msgs from the incoming edges
        msgs = self.aggregate(msgs, col, size, 'add')
        # skip connection
        h = torch.cat([x, msgs], dim=-1)
        # predict the change in states
        delta = self.out(h)
        return x + delta
Пример #6
0
    def forward(self, *x):
        Is, Ys, Iq, label = x
        N, way, shot = Is.size()[:3]
        # Is: (N, way, shot, 3, h, w) -> (N * way * shot, 3, h, w)
        Is = merge_first_k_dim(Is, dims=(0, 1, 2))
        # guarantee that the size of `label` is (N, way)
        if way == 1:
            label = label.unsqueeze(-1)
        out_s = self.backbone(Is)['layer3']
        Fs = self.embedding(out_s)
        Fs = self.deeplab_head(Fs, relu=True)
        # Fs: (N * way * shot, c, h, w) -> (N * way, shot, 3, h, w)
        Fs = depart_first_dim(Fs, dims=(N * way, shot))
        if self.visualize and way == 1:
            self.vis.update({
                'hidden_Fs':
                torch.select(Fs, dim=1, index=0).clone().detach()
            })
        # Fs: (N * way, shot, 3, h, w) -> (N, way, shot, 3, h, w)
        Fs = depart_first_dim(Fs, dims=(N, way))

        # forward query
        out_q = self.backbone(Iq)['layer3']
        Fq = self.embedding(out_q)
        Fq = self.deeplab_head(Fq, relu=True)

        if self.visualize:
            self.vis.update({'hidden_Fq': Fq.clone().detach()})

        # get knowledge logits
        logits_full = self.estimator(Fq, Fs, Ys, label, mode='training')

        # get pattern logits
        if way > 1:
            logits_binary = []
            for i in range(way):
                l = torch.select(label, dim=1, index=i)
                logits_binary.append(get_binary_logits(logits_full, l))
            logits_binary = torch.stack(logits_binary, dim=1)
            logits_binary = merge_first_k_dim(logits_binary, (0, 1))
        else:
            label = torch.select(label, dim=1, index=0)
            logits_binary = get_binary_logits(logits_full, label, base=True)

        return logits_full, logits_binary
Пример #7
0
 def forward(self, x, adj, idx, norm):
     msgs = Variable(
         torch.zeros(x.size(0), x.size(1), x.size(2), self.msg_out))
     if cfg.gpu:
         msgs = msgs.cuda()
     for i in range(idx, len(self.msgs)):
         msg = self.msgs[i](x)
         h = msg * torch.select(adj, -1, i).unsqueeze(-1)
         out = [h]
         for j in range(self.gdep):
             h = self.alpha * h + (1 - self.alpha) * h * torch.select(
                 adj, -1, i).unsqueeze(-1)
             out.append(h)
         out = torch.cat(out, dim=-1)
         out = self.mlp(out)
         out = out / norm
         msgs += out
     return msgs
Пример #8
0
 def tensor_indexing_ops(self):
     x = torch.randn(2, 4)
     y = torch.randn(4, 4)
     t = torch.tensor([[0, 0], [1, 0]])
     mask = x.ge(0.5)
     i = [0, 1]
     return len(
         torch.cat((x, x, x), 0),
         torch.concat((x, x, x), 0),
         torch.conj(x),
         torch.chunk(x, 2),
         torch.dsplit(torch.randn(2, 2, 4), i),
         torch.column_stack((x, x)),
         torch.dstack((x, x)),
         torch.gather(x, 0, t),
         torch.hsplit(x, i),
         torch.hstack((x, x)),
         torch.index_select(x, 0, torch.tensor([0, 1])),
         x.index(t),
         torch.masked_select(x, mask),
         torch.movedim(x, 1, 0),
         torch.moveaxis(x, 1, 0),
         torch.narrow(x, 0, 0, 2),
         torch.nonzero(x),
         torch.permute(x, (0, 1)),
         torch.reshape(x, (-1, )),
         torch.row_stack((x, x)),
         torch.select(x, 0, 0),
         torch.scatter(x, 0, t, x),
         x.scatter(0, t, x.clone()),
         torch.diagonal_scatter(y, torch.ones(4)),
         torch.select_scatter(y, torch.ones(4), 0, 0),
         torch.slice_scatter(x, x),
         torch.scatter_add(x, 0, t, x),
         x.scatter_(0, t, y),
         x.scatter_add_(0, t, y),
         # torch.scatter_reduce(x, 0, t, reduce="sum"),
         torch.split(x, 1),
         torch.squeeze(x, 0),
         torch.stack([x, x]),
         torch.swapaxes(x, 0, 1),
         torch.swapdims(x, 0, 1),
         torch.t(x),
         torch.take(x, t),
         torch.take_along_dim(x, torch.argmax(x)),
         torch.tensor_split(x, 1),
         torch.tensor_split(x, [0, 1]),
         torch.tile(x, (2, 2)),
         torch.transpose(x, 0, 1),
         torch.unbind(x),
         torch.unsqueeze(x, -1),
         torch.vsplit(x, i),
         torch.vstack((x, x)),
         torch.where(x),
         torch.where(t > 0, t, 0),
         torch.where(t > 0, t, t),
     )
Пример #9
0
def get_time_from_intervals(I):
    last_dim_size = I.shape[-1]
    I = F.pad(
        I, (1, 0)
    )  #pads the last dimension with width=1 on the left and width=0 on the right. Value of padding=0
    I = I.cumsum(dim=-1)
    # Note: new I has one element extra than initial I on the final dimension. This cuts that one last element in a general way
    I = torch.stack(
        [torch.select(I,
                      I.dim() - 1, i) for i in range(last_dim_size)],
        dim=-1)
    return I
Пример #10
0
def objective(p, Theta, Tx, Rx, sigma2):
    train_sample_num, L, K, Ml, N, _ = Tx.shape
    M = Rx.shape[3]
    Tx_matrix = Tx.permute(0, 1, 3, 2, 4, 5).contiguous().view(train_sample_num, L*Ml, K*N, 2)
    Rx_matrix = Rx.permute(0, 1, 3, 2, 4, 5).contiguous().view(train_sample_num, K*M, L*Ml, 2)
    Theta_matrix = Theta.view(train_sample_num, L*Ml, 2)

    Tx_real, Tx_imag = torch.select(Tx_matrix, -1, 0), torch.select(Tx_matrix, -1, 1)
    Rx_real, Rx_imag = torch.select(Rx_matrix, -1, 0), torch.select(Rx_matrix, -1, 1)
    Theta_real, Theta_imag = torch.select(Theta_matrix, -1, 0).diag_embed(), torch.select(Theta_matrix, -1, 1).diag_embed()

    Rx_Theta_real = torch.matmul(Rx_real, Theta_real) - torch.matmul(Rx_imag, Theta_imag)
    Rx_Theta_imag = torch.matmul(Rx_real, Theta_imag) + torch.matmul(Rx_imag, Theta_real)
    h_real = torch.matmul(Rx_Theta_real, Tx_real) - torch.matmul(Rx_Theta_imag, Tx_imag)
    h_imag = torch.matmul(Rx_Theta_real, Tx_imag) + torch.matmul(Rx_Theta_imag, Tx_real)
    
#     Theta_Tx_real = torch.matmul(Theta_real, Tx_real) - torch.matmul(Theta_imag, Tx_imag)
#     Theta_Tx_imag = torch.matmul(Theta_imag, Tx_real) + torch.matmul(Theta_real, Tx_imag)
#     h_real = torch.matmul(Rx_real, Theta_Tx_real) - torch.matmul(Rx_imag, Theta_Tx_imag)
#     h_imag = torch.matmul(Rx_real, Theta_Tx_imag) + torch.matmul(Rx_imag, Theta_Tx_real)
#     return torch.mean(h_real)
#     return torch.mean( Rx_Theta_real ) + torch.mean( Rx_Theta_imag ) + torch.mean( Theta_Tx_real ) + torch.mean( Theta_Tx_imag )
    h_square = h_real**2 + h_imag**2

    h_gain = p.view(train_sample_num, -1, K*N)*h_square
    numerator = h_gain.diagonal(dim1 = 1, dim2 = 2)
    denominator = ( h_gain - numerator.diag_embed() ).sum(dim = 2) + sigma2
    return torch.sum(torch.log(1 + numerator / denominator), dim = 1)/math.log(2)
Пример #11
0
 def forward(self, x):
     num_samples, num_segments, num_features = x.shape
     hk = torch.zeros((num_samples, self.out_features),
                      dtype=x.dtype,
                      device=x.device)
     alpha = self.alpha
     hiddens = []
     for k in range(num_segments):
         xk = torch.select(x, 1, k)
         hk = alpha * hk + (1 - alpha) * self.linear(xk)
         hiddens.append(hk)
     hiddens = torch.stack(hiddens, dim=1)
     return hk, hiddens
Пример #12
0
    def move(self, x, es, z, h_att, h_node=None, h_edge=None):
        """
        Args:
            x: [node, batch, step, dim]
            es: [2, E]
            z: [E, batch, K]
            h_att: [step_att, node, batch, step, dim], historical hidden states of nodes used for temporal attention
            h_node: [node, batch, step, dim], hidden states of nodes, default: None
            h_edge: [E, batch, step, dim], hidden states of edges, default: None

        Return:
            x: [node, batch, step, dim], future node states
            h_att: [step_att + 1, node, batch, step, dim], accumulated historical hidden states of nodes used for temporal attention
            msgs: [E, batch, step, dim], hidden states of edges
            cat: [node, batch, step, dim], hidden states of nodes
        """
        x_emb = self.input_emb(x)
        x_emb = torch.cat([x_emb, x], dim=-1)
        # z: [E, batch, K] -> [E, batch, step, K]
        z = z.repeat(x.size(2), 1, 1, 1).permute(1, 2, 0, 3).contiguous()
        msg, col, size = self.message(x_emb, es)
        idx = 1 if self.skip_first else 0
        norm = len(self.msgs)
        if self.skip_first:
            norm -= 1
        msgs = sum(self.msgs[i](msg) * torch.select(z, -1, i).unsqueeze(-1) /
                   norm for i in range(idx, len(self.msgs)))

        if h_edge is not None:
            msgs = self.gru_edge(msgs, h_edge)
        # aggregate all msgs to receiver
        msg = self.aggregate(msgs, col, size)

        cat = torch.cat([x, msg], dim=-1)
        if h_node is None:
            delta = self.out(cat)
            h_att = cat.unsqueeze(0)
        else:
            cat = self.gru_node(cat, h_node)
            cur_hidden, _ = self.temporalAttention(h_att, cat)
            h_att = torch.cat([h_att, cur_hidden.unsqueeze(0)], dim=0)
            delta = self.out(cur_hidden)

        return x + delta, h_att, cat, msgs
Пример #13
0
    def move(self,
             x: Tensor,
             es: Tensor,
             z: Tensor,
             h_node: Tensor = None,
             h_edge: Tensor = None):
        """
        Args:
            x: [node, batch, step, dim]
            es: [2, E]
            z: [E, batch, K]
            h_node: [node, batch, step, dim], hidden states of nodes, default: None
            h_edge: [E, batch, step, dim], hidden states of edges, default: None

        Return:
            x: [node, batch, step, dim], future node states
            msgs: [E, batch, step, dim], hidden states of edges
            cat: [node, batch, step, dim], hidden states of nodes
        """
        # z: [E, batch, K] -> [E, batch, step, K]
        z = z.repeat(x.size(2), 1, 1, 1).permute(1, 2, 0, 3).contiguous()
        msg, col, size = self.message(x, es)
        idx = 1 if self.skip_first else 0
        norm = len(self.msgs)
        if self.skip_first:
            norm -= 1
        msgs = sum(self.msgs[i](msg) * torch.select(z, -1, i).unsqueeze(-1) /
                   norm for i in range(idx, len(self.msgs)))
        if h_edge is not None and self.option in {'edge', 'both'}:
            msgs = self.gru_edge(msgs, h_edge)
        # aggregate all msgs from the incoming edges
        msg = self.aggregate(msgs, col, size)
        # skip connection
        cat = torch.cat([x, msg], dim=-1)
        if h_node is not None and self.option in {'node', 'both'}:
            cat = self.gru_node(cat, h_node)
        delta = self.out(cat)
        if self.option == 'node':
            msgs = None
        if self.option == 'edge':
            cat = None
        return x + delta, cat, msgs
Пример #14
0
    print(x.expand(-1, 4))  # -1 means not changing the size of that dimension
    """re-shape"""
    x = torch.randn(3, 2, 1)
    print(x.shape)
    print(torch.movedim(x, 1, 0).shape)
    print('unflatten',
          x.unflatten(1, (1, 2)).shape)  # torch.Size([3, 1, 2, 1]), 第2维变成 1*2
    print(t.view(16).shape)  # torch.Size([16])
    print(t.view(-1, 8).shape)  # torch.Size([2, 8]), -1表示该维度计算来
    print(torch.flatten(t))
    # print(torch.ravel(t))

    print(t)
    print(torch.narrow(t, 0, 0, 2))  # 按行,取前两行
    print(torch.narrow(t, 1, 0, 2))  # 按列,取前两列
    print(torch.select(t, 0, 1))  # 按行,取第两行
    print(torch.select(t, 1, 1))  # 按列,取第两列
    print(torch.index_select(t, 0, torch.tensor([0, 2])))  # 按行取
    print(torch.index_select(t, 1, torch.tensor([0, 2])))  # 按列取
    print('unbind')
    print(torch.unbind(t, dim=0))  # 按行拆成tuple
    print(torch.unbind(t, dim=1))  # 按列拆成tuple
    print(torch.split(t, 2, dim=0))  # 按行拆, 2行一组
    print(torch.chunk(t, 2, dim=0))  # 按行拆, 2行一组
    # print(torch.tensor_split(torch.arange(8), 3))
    """转置"""
    print(torch.t(t))  # 前两维转置
    print(t.T)  # 转置, x.permute(n-1, n-2, ..., 0)

    x = torch.randn(2, 3, 5)
    print(x.size())  # torch.Size([2, 3, 5])
Пример #15
0
    def forward(self, x_context, y_context, x_target, y_target=None):
        """ Forward pass on the context and target set 
        
        Arguments:
            x_context {torch.Tensor} -- Shape (batch_size, num_context, x_dim)
            y_context {torch.Tensor} -- Shape (batch_size, num_context, y_dim)
            x_target {torch.Tensor} -- Shape (batch_size, num_target, x_dim). Assumes this is a superset of x_context.
        
        Keyword Arguments:
            y_target {torch.Tensor} -- Shape (batch_size, num_target, y_dim). Assumes this is a superset of y_context. (default: {None})
        
        Returns:
            [y_pred_mu, y_pred_sigma, loss] -- [Mean and variance of the predictions for the y_target. The loss if we have y_targets to test against]
        """
        num_batches, num_context, y_dim = y_context.shape
        _, num_targets, x_dim = x_target.shape

        # append the channel of ones to the y vector to give it the density channel.
        # This is the reqired kernel when the multiplicity of x_context is 1

        t_grid_i = []

        # Loop through the x_dimensions and create a grid uniformly spaced with a
        # density specified via self.unit_density and a range that definity covers
        # the range of the targets
        for i in range(x_dim):
            # get the x's in the desired dimension
            x_i = torch.select(x_target, dim=-1, index=i)

            # find the integer that lower and upper bound the min and max of the
            # target x's in this dimension. Multiplying by 1.1 to give a bit of extra
            # room
            x_min_i = torch.min(x_i)
            x_max_i = torch.max(x_i)
            x_range_i = x_max_i - x_min_i
            x_min_i = torch.floor(x_min_i - 0.1 * x_range_i)
            x_max_i = torch.ceil(x_max_i + 0.1 * x_range_i)

            # create a uniform linspace
            t_grid_i.append(
                torch.linspace(x_min_i, x_max_i,
                               int(self.unit_density * (x_max_i - x_min_i))))

        t_grid = torch.meshgrid(*t_grid_i)
        t_grid = torch.stack(t_grid, dim=-1)

        t_grid_shape = t_grid.shape
        t_grid = t_grid.view(-1, x_dim)

        # Expand the t_grid to match the number of batches
        t_grid = t_grid.unsqueeze(0).repeat_interleave(num_batches, dim=0)

        # Calculate the repersentation function at each location of the grid
        # Need the transpositions as conv ops take one order of dimensions
        # and Stheno kernels the opposite.
        h_grid = kernel_interpolate(y_context,
                                    x_context,
                                    t_grid,
                                    self.kernel_x,
                                    keep_density_channel=True)

        # Concatenate the t_grid locations with the evaluated represnetation
        # functions
        # rep = torch.cat((t_grid, h_grid), dim=1)

        # Pass the representation through the decoder.
        y_mu_grid, y_sigma_grid = self.rho_cnn(
            h_grid.transpose(1, 2).view(num_batches, y_dim + 1,
                                        *list(t_grid_shape)[:-1]))
        y_mu_grid = y_mu_grid.view(num_batches, 1, -1).transpose(1, 2)
        y_sigma_grid = y_sigma_grid.view(num_batches, 1, -1).transpose(1, 2)

        y_grid = torch.cat((y_mu_grid, y_sigma_grid), dim=-1)

        y_pred_target = kernel_interpolate(y_grid,
                                           t_grid,
                                           x_target,
                                           self.kernel_rho,
                                           keep_density_channel=False)

        y_pred_target_mu, y_pred_target_sigma = torch.chunk(y_pred_target,
                                                            2,
                                                            dim=-1)

        # If we have a y_target, then return the loss. Else do not.
        if y_target is not None:
            loss = -Normal(y_pred_target_mu,
                           y_pred_target_sigma).log_prob(y_target).mean()
        else:
            loss = None

        return y_pred_target_mu, y_pred_target_sigma, loss, None, None
Пример #16
0
def rgb_to_hls(image: torch.Tensor, eps: float = 1e-8) -> torch.Tensor:
    r"""Convert a RGB image to HLS.

    .. image:: _static/img/rgb_to_hls.png

    The image data is assumed to be in the range of (0, 1).

    NOTE: this method cannot be compiled with JIT in pytohrch < 1.7.0

    Args:
        image: RGB image to be converted to HLS with shape :math:`(*, 3, H, W)`.
        eps: epsilon value to avoid div by zero.

    Returns:
        HLS version of the image with shape :math:`(*, 3, H, W)`.

    Example:
        >>> input = torch.rand(2, 3, 4, 5)
        >>> output = rgb_to_hls(input)  # 2x3x4x5
    """
    if not isinstance(image, torch.Tensor):
        raise TypeError(f"Input type is not a torch.Tensor. Got {type(image)}")

    if len(image.shape) < 3 or image.shape[-3] != 3:
        raise ValueError(
            f"Input size must have a shape of (*, 3, H, W). Got {image.shape}")

    if not torch.jit.is_scripting():
        # weird way to use globals compiling with JIT even in the code not used by JIT...
        # __setattr__ can be removed if pytorch version is > 1.6.0 and then use:
        # rgb_to_hls.RGB2HSL_IDX = hls_to_rgb.RGB2HSL_IDX.to(image.device)
        rgb_to_hls.__setattr__(
            'RGB2HSL_IDX', rgb_to_hls.RGB2HSL_IDX.to(image))  # type: ignore
        _RGB2HSL_IDX: torch.Tensor = rgb_to_hls.RGB2HSL_IDX  # type: ignore
    else:
        _RGB2HSL_IDX = torch.tensor([[[0.0]], [[1.0]], [[2.0]]],
                                    device=image.device,
                                    dtype=image.dtype)  # 3x1x1

    # maxc: torch.Tensor  # not supported by JIT
    # imax: torch.Tensor  # not supported by JIT
    maxc, imax = image.max(-3)
    minc: torch.Tensor = image.min(-3)[0]

    # h: torch.Tensor  # not supported by JIT
    # l: torch.Tensor  # not supported by JIT
    # s: torch.Tensor  # not supported by JIT
    # image_hls: torch.Tensor  # not supported by JIT
    if image.requires_grad:
        l_ = maxc + minc
        s = maxc - minc
        # weird behaviour with undefined vars in JIT...
        # scripting requires image_hls be defined even if it is not used :S
        h = l_  # assign to any tensor...
        image_hls = l_  # assign to any tensor...
    else:
        # define the resulting image to avoid the torch.stack([h, l, s])
        # so, h, l and s require inplace operations
        # NOTE: stack() increases in a 10% the cost in colab
        image_hls = torch.empty_like(image)
        h = torch.select(image_hls, -3, 0)
        l_ = torch.select(image_hls, -3, 1)
        s = torch.select(image_hls, -3, 2)
        torch.add(maxc, minc, out=l_)  # l = max + min
        torch.sub(maxc, minc, out=s)  # s = max - min

    # precompute image / (max - min)
    im: torch.Tensor = image / (s + eps).unsqueeze(-3)

    # epsilon cannot be inside the torch.where to avoid precision issues
    s /= torch.where(l_ < 1.0, l_, 2.0 - l_) + eps  # saturation
    l_ /= 2  # luminance

    # note that r,g and b were previously div by (max - min)
    r: torch.Tensor = torch.select(im, -3, 0)
    g: torch.Tensor = torch.select(im, -3, 1)
    b: torch.Tensor = torch.select(im, -3, 2)
    # h[imax == 0] = (((g - b) / (max - min)) % 6)[imax == 0]
    # h[imax == 1] = (((b - r) / (max - min)) + 2)[imax == 1]
    # h[imax == 2] = (((r - g) / (max - min)) + 4)[imax == 2]
    cond: torch.Tensor = imax.unsqueeze(-3) == _RGB2HSL_IDX
    if image.requires_grad:
        h = torch.mul((g - b) % 6, torch.select(cond, -3, 0))
    else:
        torch.mul((g - b).remainder(6), torch.select(cond, -3, 0), out=h)
    h += torch.add(b - r, 2) * torch.select(cond, -3, 1)
    h += torch.add(r - g, 4) * torch.select(cond, -3, 2)
    # h = 2.0 * math.pi * (60.0 * h) / 360.0
    h *= math.pi / 3.0  # hue [0, 2*pi]

    if image.requires_grad:
        return torch.stack([h, l_, s], dim=-3)
    return image_hls
Пример #17
0
 def forward(self, x):
     a = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
     b = a[0:-1]  # index relative to the end
     c = torch.select(a, dim=-1, index=-2)
     d = torch.select(a, dim=1, index=0)
     return b + x, c + d
Пример #18
0
from model.base import MLP, CirConv1d
Пример #19
0
def run_DENet_COCO_2way(config):
    ROOT = config['inference']['root']
    roots_path = join_path(ROOT, 'COCO')
    fold = config['inference']['fold']

    result_dir = join_path('results', config['model']['arch'],
                           config['inference']['id'])
    if not os.path.exists(result_dir):
        os.makedirs(result_dir)

    CHECKPOINT_DIR = config['inference']['ckpt']
    model = get_model(config, checkpoint_dir=CHECKPOINT_DIR)

    dataset = WrappedCOCOStuff20i(root=roots_path,
                                  fold=fold,
                                  split='test',
                                  way=2,
                                  img_size=img_size,
                                  transforms=transforms)

    save_size = config['inference']['save_size']
    cnt = 0
    while cnt < save_size:
        rand_idx = random.randint(0, len(dataset) - 1)
        print('Getting output of DENet from rand_idx: `%d`' % rand_idx)
        Is, Ys, Iq, Yq, sample_class, Ys_full, Yq_full = dataset[rand_idx]

        cls_1 = sample_class[0]
        cls_2 = sample_class[1]
        Is, Ys, Yq, sample_class, Ys_full = tensor(Is), tensor(Ys), tensor(
            Yq), tensor(sample_class), tensor(Ys_full)
        Is, Ys, Iq, Yq, sample_class, Ys_full, Yq_full = \
            unsqueeze_zero_dim(Is, Ys, Iq, Yq, sample_class, Ys_full, Yq_full)
        if torch.cuda.is_available():
            Is, Ys, Iq, Yq, sample_class, Ys_full, Yq_full = to_cuda(
                Is, Ys, Iq, Yq, sample_class, Ys_full, Yq_full)

        Yq_full_pre, Yq_pre = model(Is, Ys, Iq, sample_class)

        Is_1 = torch.select(Is, dim=1, index=0)
        Is_2 = torch.select(Is, dim=1, index=1)
        Ys_1 = torch.select(Ys, dim=1, index=0)
        Ys_2 = torch.select(Ys, dim=1, index=1)
        Yq_1 = torch.select(Yq, dim=1, index=0)
        Yq_2 = torch.select(Yq, dim=1, index=1)

        Yq_pre_1 = torch.select(Yq_pre, dim=0, index=0).unsqueeze(0)
        Yq_pre_2 = torch.select(Yq_pre, dim=0, index=1).unsqueeze(0)

        cnt += 1
        print('cnt / save_size: ', cnt, ' / ', save_size)

        Yq_pre_1, Yq_pre_2 = upsample(Yq_pre_1, Yq_1), upsample(Yq_pre_2, Yq_2)
        Yq_full_pre = upsample(Yq_full_pre, Yq_full)

        print("sample cls: ", cls_1, " ", cls_2)
        print('Saving result in: ', result_dir)
        imsave(
            join_path(result_dir,
                      'coco_%d_Is_1_2way_cls%d.png' % (rand_idx, cls_1)),
            query_rgb(Is_1.squeeze()))
        imsave(
            join_path(result_dir,
                      'coco_%d_Is_2_2way_cls%d.png' % (rand_idx, cls_2)),
            query_rgb(Is_2.squeeze()))
        imsave(join_path(result_dir, 'coco_%d_Iq_2way.png' % rand_idx),
               query_rgb(Iq))
        imsave(join_path(result_dir, 'coco_%d_Ys_1_2way.png' % rand_idx),
               mask_gray(Ys_1.squeeze(), pre=False))
        imsave(join_path(result_dir, 'coco_%d_Ys_2_2way.png' % rand_idx),
               mask_gray(Ys_2.squeeze(), pre=False))
        imsave(join_path(result_dir, 'coco_%d_Yq_full.png' % rand_idx),
               mask_color(Yq_full, 21, pre=False))
        imsave(join_path(result_dir, 'coco_%d_Yq_pre_1_2way.png' % rand_idx),
               mask_gray(Yq_pre_1.squeeze(), pre=True))
        imsave(join_path(result_dir, 'coco_%d_Yq_pre_2_2way.png' % rand_idx),
               mask_gray(Yq_pre_2.squeeze(), pre=True))
        imsave(join_path(result_dir, 'coco_%d_Yq_full_pre.png' % rand_idx),
               mask_color(Yq_full_pre.squeeze(), 21, pre=True))
Пример #20
0
    def test(self):
        # t_idx = random.randint(0, self.val_bs)
        t_idx = random.randint(0, 5)
        with torch.no_grad():
            self.fixed_randomness()  # for reproduction

            # for writing the total predictions to disk
            data_idxs = list()
            all_preds = list()

            # for ploting P-R Curve
            predicts = list()
            truths = list()

            # for showing predicted samples
            show_ctxs = list()
            pred_lbls = list()
            targets = list()

            f1_meter = AverageMeter()
            p_meter = AverageMeter()
            r_meter = AverageMeter()
            accuracy_meter = AverageMeter()
            test_generator = tqdm(enumerate(self.test_loader, 1))
            for idx, data in test_generator:
                self.model.eval()
                id, label, _, mask, data_idx = data
                if self.gpu:
                    id, mask, label = self.to_cuda(id, mask, label)
                pre = self.model((id, mask))

                lbl = label.cpu().numpy()
                yp = pre.argmax(1).cpu().numpy()
                self.update_metrics(lbl, yp, f1_meter, p_meter, r_meter, accuracy_meter)

                test_generator.set_description(
                    "Test %d/%d, f1 %.4f, p %.4f, r %.4f, acc %.4f"
                    % (idx, len(self.test_loader), f1_meter.avg,
                       p_meter.avg, r_meter.avg, accuracy_meter.avg)
                )

                data_idxs.append(data_idx.numpy())
                all_preds.append(yp)

                predicts.append(torch.select(pre, dim=1, index=1).cpu().numpy())
                truths.append(lbl)

                # show some of the sample
                ctx = torch.select(id, dim=0, index=t_idx).detach()
                ctx = self.model.tokenizer.convert_ids_to_tokens(ctx)
                ctx = "".join([_ for _ in ctx if _ not in [PAD, CLS]])
                yp = yp[t_idx]
                lbl = lbl[t_idx]

                show_ctxs.append(ctx)
                pred_lbls.append(yp)
                targets.append(lbl)

            print("*" * 25, " SAMPLE BEGINS ", "*" * 25)
            for c, t, l in zip(show_ctxs, targets, pred_lbls):
                print("ctx: ", c, " gt: ", t, " est: ", l)
            print("*" * 25, " SAMPLE ENDS ", "*" * 25)
            print("Test, FINAL f1 %.4f, "
                  "p %.4f, r %.4f, acc %.4f\n" %
                  (f1_meter.avg, p_meter.avg, r_meter.avg, accuracy_meter.avg))

            # output the final results to disk
            data_idxs = np.concatenate(data_idxs, axis=0)
            all_preds = np.concatenate(all_preds, axis=0)
            write_predictions(
                self.val_path, os.path.join(self.record_path, "results.txt"),
                data_idxs, all_preds, delimiter=self.delimiter, skip_first=self.skip_first
            )

            # output the p-r values for future plotting P-R Curve
            predicts = np.concatenate(predicts, axis=0)
            truths = np.concatenate(truths, axis=0)
            values = precision_recall_curve(truths, predicts)
            with open(os.path.join(self.record_path, "pr.values"), "wb") as f:
                pickle.dump(values, f)
            p_value, r_value, _ = values

            # plot P-R Curve if specified
            if arg.image:
                plt.figure()
                plt.plot(
                    p_value, r_value,
                    label="%s (ACC: %.2f, F1: %.2f)"
                          % (self.model_name, accuracy_meter.avg, f1_meter.avg)
                )
                plt.legend(loc="best")
                plt.title("2-Classes P-R curve")
                plt.xlabel("precision")
                plt.ylabel("recall")
                plt.savefig(os.path.join(self.record_path, "P-R.png"))
                plt.show()
Пример #21
0
    def forward(self, p, Theta, Tx, Rx, num = 1):
        # input_theta: (train_sample_num, L, Ml, 2)
        # K: users; L: number of IRS; Ml: elements of IRS;
        # M: receiver antennas; N: transmitter antennas
        # K, L, Ml, M, Nm = 3, 1, 2, 1, 1
        # Hd : (train_sample_num, K, K, M,  N,  2)      # transmitter-receiver
        # Tx : (train_sample_num, L, K, Ml, N,  2)      # transmitter-IRS
        # Rx : (train_sample_num, K, L, M,  Ml, 2)      # IRS-receiver
        # theta : (train_sample_num, L, L, Ml, Ml, 2)
        device = Tx.device
        train_sample_num = Tx.shape[0]
        K, L, Ml, M, N = self.Ksize
        Tx_matrix = Tx.permute(0, 1, 3, 2, 4, 5).contiguous().view(train_sample_num, L*Ml, K*N, 2)
        Rx_matrix = Rx.permute(0, 1, 3, 2, 4, 5).contiguous().view(train_sample_num, K*M, L*Ml, 2)
        Theta_matrix = Theta.view(train_sample_num, L*Ml, 2)

        Tx_real, Tx_imag = torch.select(Tx_matrix, -1, 0), torch.select(Tx_matrix, -1, 1)
        Rx_real, Rx_imag = torch.select(Rx_matrix, -1, 0), torch.select(Rx_matrix, -1, 1)
        Theta_real, Theta_imag = torch.select(Theta_matrix, -1, 0).diag_embed(), torch.select(Theta_matrix, -1, 1).diag_embed()


        Rx_Theta_real = torch.matmul(Rx_real, Theta_real) - torch.matmul(Rx_imag, Theta_imag)
        Rx_Theta_imag = torch.matmul(Rx_real, Theta_imag) + torch.matmul(Rx_imag, Theta_real)
        h_real = torch.matmul(Rx_Theta_real, Tx_real) - torch.matmul(Rx_Theta_imag, Tx_imag)
        h_imag = torch.matmul(Rx_Theta_real, Tx_imag) + torch.matmul(Rx_Theta_imag, Tx_real)

        h_square = h_real**2 + h_imag**2
        
        h_gain = (p**2).view(train_sample_num, -1, K*N)*h_square
        numerator = h_gain.diagonal(dim1 = 1, dim2 = 2)
        denominator = ( h_gain - numerator.diag_embed() ).sum(dim = 2) + self.sigma2
        mu = numerator / denominator
        
        numerator = torch.sqrt( (1 + mu) * h_gain.diagonal(dim1 = 1, dim2 = 2))
        denominator = h_gain.sum(dim = 2) + self.sigma2
        alpha = numerator / denominator / math.sqrt(2)
        
        numerator = (1 + mu) * alpha**2 * h_square.diagonal(dim1 = 1, dim2 = 2)
        denominator = ( ( (alpha**2).view(train_sample_num, K*N, -1) * h_square ).sum(dim = 1) )**2
        p_out = torch.min(torch.ones_like(p)*self.P_max, torch.sqrt(numerator / (2*denominator)))
        p_out = p_out.detach()
        
        numerator_real = 1/math.sqrt(2) * torch.sqrt(1 + mu)*p_out * h_real.diagonal(dim1 = 1, dim2 = 2)
        numerator_imag = 1/math.sqrt(2) * torch.sqrt(1 + mu)*p_out * h_imag.diagonal(dim1 = 1, dim2 = 2)
        h_gain = (p_out**2).view(train_sample_num, -1, K*N)*h_square
        
        denominator = h_gain.sum(dim = 2) + self.sigma2
        beta_real = numerator_real / denominator
        beta_imag = numerator_imag / denominator
        
        theta_out = torch.zeros(train_sample_num, L, Ml, 2).to(device)
        for sample in range(train_sample_num):
            if sample%100 == 0:
                print('%5d'%sample, end = '')
            theta_out[sample] = self.cvx_opt(cp_p = p_out.cpu().numpy()[sample]**2,
                        cp_Tx_real = Tx_real.cpu().numpy()[sample],
                        cp_Tx_imag = Tx_imag.cpu().numpy()[sample],
                        cp_Rx_real = Rx_real.cpu().numpy()[sample],
                        cp_Rx_imag = Rx_imag.cpu().numpy()[sample],
                        cp_beta_real = beta_real.cpu().numpy()[sample],
                        cp_beta_imag = beta_imag.cpu().numpy()[sample],
                        cp_mu = mu.cpu().numpy()[sample])
        print()
        return p_out, theta_out
Пример #22
0
def make_registration_image_summary(source_image,
                                    target_image,
                                    warped_source_image,
                                    disp_field,
                                    deform_field,
                                    source_seg=None,
                                    target_seg=None,
                                    warped_source_seg=None,
                                    n_slices=1,
                                    n_samples=1):
    """
    make image summary for tensorboard
    the image/seg grid are ordered in row by source, warped source, target and in column by HW, DW, DH slice
    the deform/disp field are ordered in row by [D, H, W]? value, target and in column by HW, DW, DH slice

    :param source_image: torch.tensor, NxCxDxHxW, 3D image volume (C:channels)
    :param target_image: torch.tensor, NxCxDxHxW, 3D image volume (C:channels)
    :param warped_source: torch.tensor, NxCxDxHxW, 3D image volume (C:channels)
    :param disp_field: torch.tensor, Nx3xDxHxW, 3D image volume, =deform_field -identity_transform
    :param deform_field: torch.tensor, Nx3xDxHxW, 3D image volume normalized in range [-1,1]
    :param n_slices: int, number of slices from a image volume
    :param n_samples: int, number of samples in a batch used from summary
    :param source_seg:
    :param warped_source_seg:
    :param target_seg:
    :return:
    """
    n_samples = min(n_samples, source_image.size()[0])
    grids = {}
    image_slices = []
    disp_slices = []
    seg_slices = []
    deform_grid_slices = []
    max_size = torch.tensor(source_image.shape[2:]).max().item()
    for n in range(n_samples):
        for axis in range(3):
            axis += 1
            # slice_ind = torch.arange(0, source_image.size()[axis], source_image.size()[axis + 2]/(n_slices+1))[1:]
            slice_ind = source_image.size()[axis + 1] // 2
            source_image_slice = torch.select(source_image[n, :, :, :, :],
                                              axis, slice_ind)
            warped_source_image_slice = torch.select(
                warped_source_image[n, :, :, :, :], axis, slice_ind)
            target_image_slice = torch.select(target_image[n, :, :, :, :],
                                              axis, slice_ind)
            image_slices += [
                source_image_slice, warped_source_image_slice,
                target_image_slice
            ]

            disp_field_slice = torch.select(disp_field[n, :, :, :, :], axis,
                                            slice_ind)
            # disp_slices += [disp_field_slice[0:1, :, :], disp_field_slice[1:2, :, :],
            #                 disp_field_slice[2:3, :, :]]
            disp_slices += [disp_field_slice]

            deform_field_slice = torch.select(deform_field[n, :, :, :, :],
                                              axis, slice_ind)

            deform_grid_slice = torch.from_numpy(
                generate_deform_grid(deform_field_slice, axis - 1,
                                     warped_source_image_slice))
            deform_grid_slices += [deform_grid_slice]

            if (source_seg is not None) and (target_seg is not None) and (
                    warped_source_seg is not None):
                source_seg_slice = torch.select(source_seg[n, :, :, :],
                                                axis - 1, slice_ind)
                source_seg_slice = labels2colors(
                    source_seg_slice,
                    images=source_image_slice.squeeze(0),
                    overlap=True)

                target_seg_slice = torch.select(target_seg[n, :, :, :],
                                                axis - 1, slice_ind)
                target_seg_slice = labels2colors(
                    target_seg_slice,
                    images=target_image_slice.squeeze(0),
                    overlap=True)

                warped_source_seg_slice = torch.select(
                    warped_source_seg[n, :, :, :], axis - 1, slice_ind)
                warped_source_seg_slice = labels2colors(
                    warped_source_seg_slice,
                    images=warped_source_image_slice.squeeze(0),
                    overlap=True)

                seg_slices += [
                    source_seg_slice, warped_source_seg_slice, target_seg_slice
                ]

        grids['images'] = vision_utils.make_grid(slices_padding(image_slices),
                                                 pad_value=1,
                                                 nrow=3,
                                                 normalize=True,
                                                 range=(0, 1))
        if seg_slices:
            grids['masks'] = vision_utils.make_grid(slices_padding(seg_slices),
                                                    pad_value=1,
                                                    nrow=3)
        grids['disp_field'] = vision_utils.make_grid(
            slices_padding(disp_slices),
            pad_value=1,
            nrow=1,
            normalize=True,
            range=(-0.1, 0.1))
        grids['deform_grid'] = vision_utils.make_grid(
            slices_padding(deform_grid_slices), pad_value=1, nrow=1)
    return grids
Пример #23
0
 def func(z):
     z_ = torch.view_as_complex(z)
     z_select = torch.select(z_, z_.dim() - 1, 0)
     z_select_real = torch.view_as_real(z_select)
     return z_select_real.sum()
Пример #24
0
 def forward(self, x):
     return torch.select(x, self.dim, self.pos)
Пример #25
0
 def forward(self, x):
     a = torch.tensor([[1., 2., 3.], [4., 5., 6.]])
     b = torch.select(a, dim=1, index=-2)
     c = torch.index_select(a, dim=-2, index=torch.tensor([0, 1]))
     return b + 1, c + x
Пример #26
0
    def forward(self, x):
        x0 = torch.select(x, 0, 0)
        x1 = torch.select(x, 0, 1)
        x2 = torch.select(x, 0, 2)
        y0 = torch.select(x, 1, 0)
        y1 = torch.select(x, 1, 1)
        y2 = torch.select(x, 1, 2)
        y3 = torch.select(x, 1, 3)
        z0 = torch.select(x, 2, 0)
        z1 = torch.select(x, 2, 1)
        z2 = torch.select(x, 2, 2)
        z3 = torch.select(x, 2, 3)
        z4 = torch.select(x, 2, 4)

        return x0, x1, x2, y0, y1, y2, y3, z0, z1, z2, z3, z4