def updateGradInput(self, input, gradOutput): if self.gradInput is None: return if self._div is None: self._div = input.new() if self._output is None: self._output = self.output.new() if self._expand4 is None: self._expand4 = input.new() if self._gradOutput is None: self._gradOutput = input.new() if not self.fastBackward: self.updateOutput(input) inputSize, outputSize = self.weight.size(0), self.weight.size(1) """ dy_j -2 * c_j * c_j * (w_j - x) c_j * c_j * (x - w_j) ---- = -------------------------- = --------------------- dx 2 || c_j * (w_j - x) || y_j """ # to prevent div by zero (NaN) bugs self._output.resize_as_(self.output).copy_(self.output).add_(1e-7) self._view(self._gradOutput, gradOutput, gradOutput.size()) torch.div(gradOutput, self._output, out=self._div) if input.dim() == 1: self._div.resize_(1, outputSize) self._expand4 = self._div.expand_as(self.weight) if torch.type(input) == 'torch.cuda.FloatTensor': self._repeat2.resize_as_(self._expand4).copy_(self._expand4) self._repeat2.mul_(self._repeat) else: self._repeat2.mul_(self._repeat, self._expand4) self._repeat2.mul_(self.diagCov) torch.sum(self._repeat2, 1, out=self.gradInput) self.gradInput.resize_as_(input) elif input.dim() == 2: batchSize = input.size(0) self._div.resize_(batchSize, 1, outputSize) self._expand4 = self._div.expand(batchSize, inputSize, outputSize) if input.type() == 'torch.cuda.FloatTensor': self._repeat2.resize_as_(self._expand4).copy_(self._expand4) self._repeat2.mul_(self._repeat) self._repeat2.mul_(self._repeat3) else: torch.mul(self._repeat, self._expand4, out=self._repeat2) self._repeat2.mul_(self._expand3) torch.sum(self._repeat2, 2, out=self.gradInput) self.gradInput.resize_as_(input) else: raise RuntimeError("1D or 2D input expected") return self.gradInput
def _smooth_l1_loss(x, t, in_weight, sigma): sigma2 = sigma**2 in_weight = in_weight.type(torch.FloatTensor) x = x.type(torch.FloatTensor) t = t.type(torch.FloatTensor) diff = in_weight * (x - t) abs_diff = diff.abs() flag = (abs_diff.data < (1. / sigma2)).float() y = (flag * (sigma2 / 2.) * (diff**2) + (1 - flag) * (abs_diff - 0.5 / sigma2)) return y.sum()
def accGradParameters(self, input, gradOutput, scale=1): inputSize, outputSize = self.weight.size(0), self.weight.size(1) """ dy_j 2 * c_j * c_j * (w_j - x) c_j * c_j * (w_j - x) ---- = -------------------------- = --------------------- dw_j 2 || c_j * (w_j - x) || y_j dy_j 2 * c_j * (w_j - x)^2 c_j * (w_j - x)^2 ---- = ----------------------- = ----------------- dc_j 2 || c_j * (w_j - x) || y_j #""" # assumes a preceding call to updateGradInput if input.dim() == 1: self.gradWeight.add_(-scale, self._repeat2) self._repeat.div_(self.diagCov) self._repeat.mul_(self._repeat) self._repeat.mul_(self.diagCov) if torch.type(input) == 'torch.cuda.FloatTensor': self._repeat2.resize_as_(self._expand4).copy_(self._expand4) self._repeat2.mul_(self._repeat) else: torch.mul(self._repeat, self._expand4, out=self._repeat2) self.gradDiagCov.add_(self._repeat2) elif input.dim() == 2: if self._sum is None: self._sum = input.new() torch.sum(self._repeat2, 0, True, out=self._sum) self._sum.resize_(inputSize, outputSize) self.gradWeight.add_(-scale, self._sum) if input.type() == 'torch.cuda.FloatTensor': # requires lots of memory, but minimizes cudaMallocs and loops self._repeat.div_(self._repeat3) self._repeat.mul_(self._repeat) self._repeat.mul_(self._repeat3) self._repeat2.resize_as_(self._expand4).copy_(self._expand4) self._repeat.mul_(self._repeat2) else: self._repeat.div_(self._expand3) self._repeat.mul_(self._repeat) self._repeat.mul_(self._expand3) self._repeat.mul_(self._expand4) torch.sum(self._repeat, 0, True, out=self._sum) self._sum.resize_(inputSize, outputSize) self.gradDiagCov.add_(scale, self._sum) else: raise RuntimeError("1D or 2D input expected")
def accGradParameters(self, input, gradOutput, scale=1): inputSize, outputSize = self.weight.size(0), self.weight.size(1) """ dy_j 2 * c_j * c_j * (w_j - x) c_j * c_j * (w_j - x) ---- = -------------------------- = --------------------- dw_j 2 || c_j * (w_j - x) || y_j dy_j 2 * c_j * (w_j - x)^2 c_j * (w_j - x)^2 ---- = ----------------------- = ----------------- dc_j 2 || c_j * (w_j - x) || y_j #""" # assumes a preceding call to updateGradInput if input.dim() == 1: self.gradWeight.add_(-scale, self._repeat2) self._repeat.div_(self.diagCov) self._repeat.mul_(self._repeat) self._repeat.mul_(self.diagCov) if torch.type(input) == 'torch.cuda.FloatTensor': self._repeat2.resize_as_(self._expand4).copy_(self._expand4) self._repeat2.mul_(self._repeat) else: torch.mul(self._repeat, self._expand4, out=self._repeat2) self.gradDiagCov.add_(self._repeat2) elif input.dim() == 2: if self._sum is None: self._sum = input.new() torch.sum(self._repeat2, 0, out=self._sum) self._sum.resize_(inputSize, outputSize) self.gradWeight.add_(-scale, self._sum) if input.type() == 'torch.cuda.FloatTensor': # requires lots of memory, but minimizes cudaMallocs and loops self._repeat.div_(self._repeat3) self._repeat.mul_(self._repeat) self._repeat.mul_(self._repeat3) self._repeat2.resize_as_(self._expand4).copy_(self._expand4) self._repeat.mul_(self._repeat2) else: self._repeat.div_(self._expand3) self._repeat.mul_(self._repeat) self._repeat.mul_(self._expand3) self._repeat.mul_(self._expand4) torch.sum(self._repeat, 0, out=self._sum) self._sum.resize_(inputSize, outputSize) self.gradDiagCov.add_(scale, self._sum) else: raise RuntimeError("1D or 2D input expected")
def __tostring__(self): tab = ' ' line = '\n' next = ' |`-> ' ext = ' | ' extlast = ' ' last = ' +. -> ' res = torch.type(self) res += ' {' + line + tab + 'input' for i in range(len(self.modules)): if i == len(self.modules) - 1: res += line + tab + next + '(' + i + '): ' + str(self.modules[i]).replace(line, line + tab + extlast) else: res += line + tab + next + '(' + i + '): ' + str(self.modules[i]).replace(line, line + tab + ext) res += line + tab + last + 'output' res += line + '}' return res
def __tostring__(self): tab = ' ' line = '\n' next = ' |`-> ' ext = ' | ' extlast = ' ' last = ' +. -> ' res = torch.type(self) res += ' {' + line + tab + 'input' for i in range(len(self.modules)): if i == len(self.modules) - 1: res += line + tab + next + '(' + i + '): ' + str( self.modules[i]).replace(line, line + tab + extlast) else: res += line + tab + next + '(' + i + '): ' + str( self.modules[i]).replace(line, line + tab + ext) res += line + tab + last + 'output' res += line + '}' return res
def binary(config, gan, net): net = torch.gt(net, 0) net = torch.type(net, torch.Float) return net
def sharingKey(m): key = torch.type(m) if m.__shareGradInputKey:
model = require('models/' .. opt.netType)(opt) if checkpoint: modelPath = paths.concat(opt.resume, checkpoint.modelFile) assert(paths.filep(modelPath), 'Saved model not found: ' .. modelPath) print('=> Resuming model from ' .. modelPath) model0 = torch.load(modelPath):type(opt.tensorType) M.copyModel(model, model0) elif opt.retrain ~= 'none': assert(paths.filep(opt.retrain), 'File not found: ' .. opt.retrain) print('Loading model from file: ' .. opt.retrain) model0 = torch.load(opt.retrain).type(opt.tensorType) M.copyModel(model, model0) if torch.type(model) == 'nn.DataParallelTable': model = model.get(1) if opt.optnet or opt.optMemory == 1: optnet = require 'optnet' imsize = opt.dataset == 'imagenet' and 224 or 32 sampleInput = torch.zeros(4,3,imsize,imsize):type(opt.tensorType) optnet.optimizeMemory(model, sampleInput, {inplace = false, mode = 'training'}) if opt.shareGradInput or opt.optMemory >= 2: M.shareGradInput(model, opt) M.sharePrevOutput(model, opt)
def updateGradInput(self, input, gradOutput): if self.gradInput is None: return if self._div is None: self._div = input.new() if self._output is None: self._output = self.output.new() if self._expand4 is None: self._expand4 = input.new() if self._gradOutput is None: self._gradOutput = input.new() if not self.fastBackward: self.updateOutput(input) inputSize, outputSize = self.weight.size(0), self.weight.size(1) """ dy_j -2 * c_j * c_j * (w_j - x) c_j * c_j * (x - w_j) ---- = -------------------------- = --------------------- dx 2 || c_j * (w_j - x) || y_j """ # to prevent div by zero (NaN) bugs self._output.resize_as_(self.output).copy_(self.output).add_(1e-7) self._view(self._gradOutput, gradOutput, gradOutput.size()) torch.div(gradOutput, self._output, out=self._div) if input.dim() == 1: self._div.resize_(1, outputSize) self._expand4 = self._div.expand_as(self.weight) if torch.type(input) == 'torch.cuda.FloatTensor': self._repeat2.resize_as_(self._expand4).copy_(self._expand4) self._repeat2.mul_(self._repeat) else: self._repeat2.mul_(self._repeat, self._expand4) self._repeat2.mul_(self.diagCov) torch.sum(self._repeat2, 1, True, out=self.gradInput) self.gradInput.resize_as_(input) elif input.dim() == 2: batchSize = input.size(0) self._div.resize_(batchSize, 1, outputSize) self._expand4 = self._div.expand(batchSize, inputSize, outputSize) if input.type() == 'torch.cuda.FloatTensor': self._repeat2.resize_as_(self._expand4).copy_(self._expand4) self._repeat2.mul_(self._repeat) self._repeat2.mul_(self._repeat3) else: torch.mul(self._repeat, self._expand4, out=self._repeat2) self._repeat2.mul_(self._expand3) torch.sum(self._repeat2, 2, True, out=self.gradInput) self.gradInput.resize_as_(input) else: raise RuntimeError("1D or 2D input expected") return self.gradInput