Пример #1
0
 def compute(self, data: torch.Tensor) -> torch.Tensor:
     if self.demean:
         data = data - nanmean(data).unsqueeze(-1)
     return data / nansum(data.abs(), dim=1).unsqueeze(-1)
Пример #2
0
 def _spectrogram(x: torch.Tensor) -> torch.Tensor:
     return x.abs()
Пример #3
0
 def compute(self, data: torch.Tensor) -> torch.Tensor:
     return data.abs()
Пример #4
0
def invert_ulaw(x: torch.Tensor, mu: float = 255.0) -> torch.Tensor:
    return x.sign() * (1 / mu) * ((1 + mu) ** x.abs() - 1)
Пример #5
0
 def forward(self, pred: torch.Tensor, teacher: torch.Tensor, smooth=1.0):
     teacher = teacher.float()
     intersection = (pred * teacher).sum((-1, -2))
     sum_ = (pred.abs() + pred.abs()).sum((-1, -2))
     jaccard = (intersection + smooth) / (sum_ - intersection + smooth)
     return (1 - jaccard).mean(1).mean(0)
Пример #6
0
def linear_contribution(x: torch.Tensor) -> torch.Tensor:
    ax = x.abs()
    range_01 = ax.le(1)
    cont = (1 - ax) * range_01.to(dtype=x.dtype)
    return cont
Пример #7
0
def gaussian_contribution(x: torch.Tensor, sigma: float = 2.0) -> torch.Tensor:
    range_3sigma = (x.abs() <= 3 * sigma + 1)
    # Normalization will be done after
    cont = torch.exp(-x.pow(2) / (2 * sigma**2))
    cont = cont * range_3sigma.to(dtype=x.dtype)
    return cont
Пример #8
0
def transformed_h(qval: torch.Tensor, eps: float = 1e-2):
    return qval.sign() * ((qval.abs() + 1).sqrt() - 1) + eps * qval
Пример #9
0
def transformed_h_reverse(qval: torch.Tensor, eps: float = 1e-2):
    return qval.sign() * (
        (((1 + 4 * eps * (qval.abs() + 1 + eps)).sqrt() - 1) / (2 * eps)).pow(2) - 1
    )
Пример #10
0
    def get_nll(self,
                xin: torch.Tensor,
                xin_ind: torch.Tensor,
                weights: torch.Tensor = None,
                debug=False):
        """Given an input tensor and the corresponding index tensor (both shapes = (N,D)) computes
        the average negative likelihood of observing the inputs"""
        xin_ind = xin_ind.to(self.device)
        probs = self.get_probs(xin)

        D = self.dim
        N = xin.shape[0]
        batch_ind = np.stack([range(N)] * D, axis=-1)
        var_ind = np.stack([range(D)] * N, axis=0)
        prob_in = probs[batch_ind, var_ind, xin_ind]

        if weights is None:
            nll_samples = -prob_in.log2().sum(dim=-1)
            weighted_nll = nll_samples.mean(dim=-1)
            return weighted_nll
        else:
            # multiply each nll by the corresponding weight and take the mean
            # prob_x = prob_in.prod(-1)
            # pos_ind = (weights > 0)
            # neg_ind = ~pos_ind
            # prob_obs = prob_x ** pos_ind.float()
            # prob_obs_b = (torch.tensor(1) - prob_x) ** neg_ind.float()
            # pos_obj = (prob_obs.log2() * weights.abs()).sum(-1) / pos_ind.sum(-1)
            # neg_obj = (prob_obs_b.log2() * weights.abs()).sum(-1) / neg_ind.sum(-1)
            # ll = pos_obj + neg_obj
            # nll = -ll
            #
            # return nll

            eps_tens = torch.tensor(1e-15)
            prob_x = prob_in.prod(-1)
            pos_ind = (weights > 0).float()
            neg_ind = torch.tensor(1) - pos_ind
            logp_vec = (prob_x + eps_tens).log10()

            npos = pos_ind.sum(-1)

            if npos > 0:
                pos_ll = (logp_vec * weights.abs() * pos_ind).sum(-1) / npos
            else:
                pos_ll = (logp_vec * weights.abs() * pos_ind).sum(-1)

            nneg = neg_ind.sum(-1)

            if nneg > 0:
                neg_ll = (logp_vec * weights.abs() * neg_ind).sum(-1) / nneg
            else:
                neg_ll = (logp_vec * weights.abs() * neg_ind).sum(-1)

            # min_obj =  -pos_ll  + neg_ll
            min_obj = -pos_ll
            # min_obj =  neg_ll

            if debug:
                pdb.set_trace()

            if torch.isnan(min_obj):
                print(min_obj)
                pdb.set_trace()
            return min_obj
 def update(self, tensor: torch.Tensor):
     tensor_max = tensor.abs().amax((0, 2, 3))
     tensor_max.div_(self.value).clamp_(self.eps)
     tensor_max.mul_(self.momentum)
     self.running_max.mul_(1 - self.momentum)
     self.running_max.add_(tensor_max)
Пример #12
0
 def forward(self, input: torch.Tensor, target: torch.Tensor):
     input = input.float().view(-1)
     target = target.float().view(-1)
     neg_abs = -input.abs()
     loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log()
     return loss.mean()