Пример #1
0
 def __init__(self, n_feats, device='cpu'):
     super(Net, self).__init__()
     self.atom_embedding = nn.Linear(n_feats, n_feats)
     self.conv1 = GCNConv(n_feats, n_feats)
     self.pool1 = EdgePooling(n_feats)
     self.conv2 = GCNConv(n_feats, n_feats)
     self.pool2 = EdgePooling(n_feats)
     self.linear = torch.nn.Linear(2 * n_feats, 1)
     self.device = device
Пример #2
0
 def __init__(self, dataset, num_layers, hidden, ratio):
     super(EdgePool, self).__init__()
     self.conv1 = GNN_Block(dataset.num_features, hidden)
     self.pool1 = EdgePooling(hidden)
     self.convs = torch.nn.ModuleList()
     self.pools = torch.nn.ModuleList()
     self.convs.extend(
         [GNN_Block(hidden, hidden) for i in range(num_layers - 1)])
     self.pools.extend(
         [EdgePooling(hidden) for i in range((num_layers) - 1)])
     self.embed_final = GNN_Block(hidden, hidden)
     self.jump = JumpingKnowledge(mode='cat')
     self.lin1 = Linear((num_layers + 1) * hidden, hidden)
     self.lin2 = Linear(hidden, dataset.num_classes)
Пример #3
0
  def __init__(self,
              in_channels,
              out_channels,
              beta = 0.3):
    super().__init__()
    self.in_channels = in_channels
    self.out_channels = out_channels
    self.beta = beta

    text_feature_size = 220
    self.conv1_img = GATConv(train_dataset.num_features, 512, heads= 3, dropout=0.2)
    self.conv1_text = GATConv(text_feature_size, text_feature_size // 2 , heads= 3, dropout=0.2)

    self.conv2_img = GATConv(512 * 3, 512, heads= 1, dropout=0.2)
    self.conv2_text = GATConv(text_feature_size // 2 * 3, text_feature_size // 2, heads= 1, dropout=0.2)

    self.conv3_img = GATConv(512, 20, heads = 1, dropout = 0.2)
    self.conv3_text = GATConv(text_feature_size // 2, 20, heads = 1, dropout= 0.2)

    self.conv4 = GATConv(40, 20, heads= 2, dropout=0.2)

    self.pool1= EdgePooling(40)

    #global_mean_pool 

    self.lin1 = Lin(40, 20) 
    self.lin2 = Lin(20, 2)
Пример #4
0
def test_compute_edge_score_sigmoid():
    edge_index = torch.tensor([[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5],
                               [1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 5, 4]])
    raw = torch.randn(edge_index.size(1))
    e = EdgePooling.compute_edge_score_sigmoid(raw, edge_index, 6)
    assert torch.all(e >= 0) and torch.all(e <= 1)
    assert torch.all(torch.argsort(raw) == torch.argsort(e))
Пример #5
0
    def __init__(self, sample, multipliers=[4, 4, 4], channels=8, finalnodes=2):
        super(GraphConvPoolNet, self).__init__()
        self.channels = channels
        self.input = GraphConv(sample.num_node_features, self.channels)
        self.conv1 = GraphConv(self.channels, multipliers[0] * self.channels)
        self.pool1 = EdgePooling(multipliers[0] * self.channels, dropout=0.2)
        self.conv2 = GraphConv(multipliers[0] * self.channels, (multipliers[1] + multipliers[0]) * self.channels)
        self.pool2 = EdgePooling((multipliers[1] + multipliers[0]) * self.channels, dropout=0.2)
        self.conv3 = GraphConv((multipliers[1] + multipliers[0]) * self.channels,
                               (multipliers[2] + multipliers[1] + multipliers[0]) * self.channels)

        self.looppool = EdgePooling((multipliers[2] + multipliers[1] + multipliers[0]) * self.channels, dropout=0.2)
        self.loopconv = GraphConv((multipliers[2] + multipliers[1] + multipliers[0]) * self.channels,
                                  (multipliers[2] + multipliers[1] + multipliers[0]) * self.channels)

        # Readout layer
        self.readout = max_pool_x
        self.finalnodes = finalnodes
        self.output = nn.Linear(self.finalnodes * (multipliers[2] + multipliers[1] + multipliers[0]) * self.channels, 1)
Пример #6
0
def test_compute_edge_score_softmax():
    edge_index = torch.tensor([[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5],
                               [1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 5, 4]])
    raw = torch.randn(edge_index.size(1))
    e = EdgePooling.compute_edge_score_softmax(raw, edge_index, 6)
    assert torch.all(e >= 0) and torch.all(e <= 1)

    # Test whether all incoming edge scores sum up to one.
    assert torch.allclose(scatter_add(e, edge_index[1]),
                          torch.Tensor([1, 1, 1, 1, 1, 1]))
Пример #7
0
    def poollayer(self, pooltype):

        self.pooltype = pooltype

        if self.pooltype == 'TopKPool':
            self.pool1 = TopKPooling(1024)
            self.pool2 = TopKPooling(1024)
        elif self.pooltype == 'EdgePool':
            self.pool1 = EdgePooling(1024)
            self.pool2 = EdgePooling(1024)
        elif self.pooltype == 'ASAPool':
            self.pool1 = ASAPooling(1024)
            self.pool2 = ASAPooling(1024)
        elif self.pooltype == 'SAGPool':
            self.pool1 = SAGPooling(1024)
            self.pool2 = SAGPooling(1024)
        else:
            print('Such graph pool method is not implemented!!')

        return self.pool1, self.pool2
Пример #8
0
    def __init__(self, k=2, w1=128, w2=128, w3=128):
        super(Net, self).__init__()

        self.conv = CustomGCN(2, 1, cached=False)
        self.conv.weight.requires_grad = False

        self.topk = TopKPooling(1, min_score=0.1)
        self.topk.weight.requires_grad = False

        self.conv1 = ChebConv(2, w1, k)
        self.bn1 = BatchNorm1d(w1)
        self.pool1 = EdgePooling(w1)

        self.conv2 = ChebConv(w1, w2, k)
        self.bn2 = BatchNorm1d(w2)
        self.pool2 = EdgePooling(w2)

        self.conv3 = ChebConv(w2, w3, k)
        self.bn3 = BatchNorm1d(w3)

        self.linear = Linear(w3, 3)
Пример #9
0
def test_edge_pooling():
    x = torch.Tensor([[0], [1], [2], [3], [4], [5], [-1]])
    edge_index = torch.tensor([[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 6],
                               [1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 5, 4, 0]])
    batch = torch.tensor([0, 0, 0, 0, 1, 1, 0])

    op = EdgePooling(in_channels=1)
    assert op.__repr__() == 'EdgePooling(1)'

    # Setting parameters fixed so we can test the expected outcome.
    op.lin.weight[0, 0] = 1
    op.lin.weight[0, 1] = 1
    op.lin.bias[0] = 0

    # Test pooling.
    new_x, new_edge_index, new_batch, unpool_info = op(x, edge_index, batch)

    assert new_x.size(0) == new_batch.size(0) == 4
    assert new_batch.tolist() == [1, 0, 0, 0]
    assert torch.all(new_batch == torch.tensor([1, 0, 0, 0]))
    assert new_edge_index.tolist() == [[0, 1, 1, 2, 2, 3], [0, 1, 2, 1, 2, 2]]

    # Test unpooling.
    unpooled_x, unpooled_edge_index, unpooled_batch = op.unpool(
        new_x, unpool_info)
    assert unpooled_edge_index.tolist() == edge_index.tolist()
    assert unpooled_batch.tolist() == batch.tolist()
    assert x.size() == unpooled_x.size()
    assert unpooled_x.tolist() == [[1], [1], [5], [5], [9], [9], [-1]]

    # Test edge cases.
    x = torch.Tensor([[0], [1], [2], [3], [4], [5]])
    edge_index = torch.tensor([[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5],
                               [1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 5, 4]])
    batch = torch.tensor([0, 0, 0, 0, 1, 1])
    new_x, new_edge_index, new_batch, _ = op(x, edge_index, batch)

    assert new_x.size(0) == new_batch.size(0) == 3
    assert new_batch.tolist() == [1, 0, 0]
    assert new_edge_index.tolist() == [[0, 1, 1, 2, 2], [0, 1, 2, 1, 2]]
Пример #10
0
 def __init__(self, dataset, num_layers, hidden):
     super().__init__()
     self.conv1 = GraphConv(dataset.num_features, hidden, aggr='mean')
     self.convs = torch.nn.ModuleList()
     self.pools = torch.nn.ModuleList()
     self.convs.extend([
         GraphConv(hidden, hidden, aggr='mean')
         for i in range(num_layers - 1)
     ])
     self.pools.extend(
         [EdgePooling(hidden) for i in range((num_layers) // 2)])
     self.jump = JumpingKnowledge(mode='cat')
     self.lin1 = Linear(num_layers * hidden, hidden)
     self.lin2 = Linear(hidden, dataset.num_classes)
Пример #11
0
    def message(self, x_i, x_j, edge_index: Adj, edge_attr: OptTensor,
                size) -> Tensor:

        if self.debug:
            print('a x_j:', x_j.shape, 'x_i:', x_i.shape, 'edge_attr:',
                  edge_attr.shape)
        if self.step == 0:

            x_i = F.leaky_relu(self.atom_fc(x_i))  # code 3

            # neighbor_feature => neighbor_fc
            x_j = torch.cat([x_j, edge_attr], dim=-1)  # code 8
            if self.debug:
                print('b neighbor_feature i = 0', x_j.shape)

            x_j = F.leaky_relu(self.neighbor_fc(x_j))  # code 9
            if self.debug:
                print('c neighbor_feature i = 0', x_j.shape)

        # align score
        evu = F.leaky_relu(self.align(torch.cat([x_i, x_j],
                                                dim=-1)))  # code 10
        if self.debug:
            print('d align_score:', evu.shape)

        avu = EdgePooling.compute_edge_score_softmax(evu, edge_index,
                                                     edge_index.max().item() +
                                                     1)  # code 11
        if self.debug:
            print('e attention_weight:', avu.shape)
        # to do downscaling 200 fp => 32
        c_i = F.elu(torch.mul(avu, self.attend(self.dropout(x_i))))  # code 12
        # to do upscaling 32 => 200 fp
        if self.debug:
            print('f context', c_i.shape)

        x_i = self.rnn(c_i, x_i)
        if self.debug:
            print('g gru', c_i.shape)

        return x_i