Пример #1
0
def test_pdn_conv():
    x = torch.randn(4, 16)
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
    row, col = edge_index
    edge_attr = torch.randn(6, 8)
    adj = SparseTensor(row=row, col=col, value=edge_attr, sparse_sizes=(4, 4))

    conv = PDNConv(16, 32, edge_dim=8, hidden_channels=128)
    assert str(conv) == "PDNConv(16, 32)"
    out = conv(x, edge_index, edge_attr)
    assert out.size() == (4, 32)
    assert torch.allclose(conv(x, adj.t()), out, atol=1e-6)

    t = '(Tensor, Tensor, OptTensor) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert torch.allclose(jit(x, edge_index, edge_attr), out)

    t = '(Tensor, SparseTensor, OptTensor) -> Tensor'
    jit = torch.jit.script(conv.jittable(t))
    assert torch.allclose(jit(x, adj.t()), out, atol=1e-6)
Пример #2
0
def test_pdn_conv_with_sparse_node_input_feature():
    x = torch.sparse_coo_tensor(
        indices=torch.tensor([[0, 0], [0, 1]]),
        values=torch.tensor([1.0, 1.0]),
        size=torch.Size([4, 16]),
    )
    edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]])
    edge_attr = torch.randn(6, 8)

    conv = PDNConv(16, 32, edge_dim=8, hidden_channels=128)

    out = conv(x, edge_index, edge_attr)
    assert out.size() == (4, 32)