Пример #1
0
    def forward(self,
                x: Tensor,
                edge_index: Adj,
                edge_attr: OptTensor = None) -> Tensor:
        """"""

        if isinstance(edge_index, SparseTensor):
            edge_attr = edge_index.storage.value()

        if edge_attr is not None:
            edge_attr = self.mlp(edge_attr).squeeze(-1)

        if isinstance(edge_index, SparseTensor):
            edge_index = edge_index.set_value(edge_attr, layout='coo')

        if self.normalize:
            if isinstance(edge_index, Tensor):
                edge_index, edge_attr = gcn_norm(edge_index, edge_attr,
                                                 x.size(self.node_dim), False,
                                                 self.add_self_loops)
            elif isinstance(edge_index, SparseTensor):
                edge_index = gcn_norm(edge_index, None, x.size(self.node_dim),
                                      False, self.add_self_loops)

        x = self.lin(x)

        # propagate_type: (x: Tensor, edge_weight: OptTensor)
        out = self.propagate(edge_index, x=x, edge_weight=edge_attr, size=None)

        if self.bias is not None:
            out += self.bias

        return out
Пример #2
0
    def forward(self, x: Tensor, edge_index: Adj) -> Tensor:
        """"""
        edge_weight: OptTensor = None
        if isinstance(edge_index, Tensor):
            num_nodes = x.size(self.node_dim)
            if self.add_self_loops:
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)

            row, col = edge_index[0], edge_index[1]
            deg_inv = 1. / degree(col, num_nodes=num_nodes).clamp_(1.)

            edge_weight = deg_inv[col]
            edge_weight[row == col] += self.diag_lambda * deg_inv

        elif isinstance(edge_index, SparseTensor):
            if self.add_self_loops:
                edge_index = set_diag(edge_index)

            col, row, _ = edge_index.coo()  # Transposed.
            deg_inv = 1. / sparsesum(edge_index, dim=1).clamp_(1.)

            edge_weight = deg_inv[col]
            edge_weight[row == col] += self.diag_lambda * deg_inv
            edge_index = edge_index.set_value(edge_weight, layout='coo')

        # propagate_type: (x: Tensor, edge_weight: OptTensor)
        out = self.propagate(edge_index,
                             x=x,
                             edge_weight=edge_weight,
                             size=None)
        out = self.lin_out(out) + self.lin_root(x)

        return out
    def forward(self, x: Union[Tensor, OptPairTensor], edge_index: Adj, edge_type: Optional[torch.Tensor] = None,
                size: Size = None, return_attention_weights=None):
        r"""
        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """

        assert x.dim() == 2, 'Static graphs not supported in `GATConv`.'
        x = x.view(-1, self.heads, self.out_channels)
        # propagate_type: (x: OptPairTensor, alpha: OptPairTensor)
        out = self.propagate(edge_index, x=x, edge_type=edge_type, size=size)

        alpha = self._alpha
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if self.bias is not None:
            out += self.bias

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
    def forward(self,
                x: Union[Tensor, PairTensor],
                edge_index: Adj,
                edge_attr: OptTensor = None,
                return_attention_weights=None):
        # type: (Union[Tensor, PairTensor], Tensor, OptTensor, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, PairTensor], SparseTensor, OptTensor, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, PairTensor], Tensor, OptTensor, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]]  # noqa
        # type: (Union[Tensor, PairTensor], SparseTensor, OptTensor, bool) -> Tuple[Tensor, SparseTensor]  # noqa
        r"""
        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """

        H, C = self.heads, self.out_channels

        if isinstance(x, Tensor):
            x: PairTensor = (x, x)

        query = self.lin_query(x[1]).view(-1, H, C)
        key = self.lin_key(x[0]).view(-1, H, C)
        value = self.lin_value(x[0]).view(-1, H, C)

        # propagate_type: (query: Tensor, key:Tensor, value: Tensor, edge_attr: OptTensor) # noqa
        out = self.propagate(edge_index,
                             query=query,
                             key=key,
                             value=value,
                             edge_attr=edge_attr,
                             size=None)

        alpha = self._alpha
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if self.root_weight:
            x_r = self.lin_skip(x[1])
            if self.lin_beta is not None:
                beta = self.lin_beta(torch.cat([out, x_r, out - x_r], dim=-1))
                beta = beta.sigmoid()
                out = beta * x_r + (1 - beta) * out
            else:
                out += x_r

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
Пример #5
0
    def forward(self, x: Union[Tensor, OptPairTensor], edge_index: Adj,
                size: Size = None, return_attention_weights=None):
        r"""
        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """
        H, C = self.heads, self.out_channels

        x_l: OptTensor = None
        x_r: OptTensor = None
        if isinstance(x, Tensor):
            assert x.dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = x_r = self.lin_l(x).view(-1, H, C)
        else:
            x_l, x_r = x[0], x[1]
            assert x[0].dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = self.lin_l(x_l).view(-1, H, C)
            if x_r is not None:
                x_r = self.lin_r(x_r).view(-1, H, C)

        assert x_l is not None

        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                num_nodes = x_l.size(0)
                if x_r is not None:
                    num_nodes = min(num_nodes, x_r.size(0))
                if size is not None:
                    num_nodes = min(size[0], size[1])
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)
            elif isinstance(edge_index, SparseTensor):
                edge_index = set_diag(edge_index)

        # propagate_type: (x: OptPairTensor, alpha: OptPairTensor)
        out = self.propagate(edge_index, x=(x_l, x_r), size=size)

        alpha = self._alpha
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if self.bias is not None:
            out += self.bias

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
Пример #6
0
    def forward(self,
                x: Tensor,
                edge_index: Adj,
                edge_weight: OptTensor = None) -> Tensor:
        """"""
        if self.normalize:
            if isinstance(edge_index, Tensor):
                cache = self._cached_edge_index
                if cache is None:
                    edge_index, edge_weight = gcn_norm(  # yapf: disable
                        edge_index,
                        edge_weight,
                        x.size(self.node_dim),
                        False,
                        self.add_self_loops,
                        self.flow,
                        dtype=x.dtype)
                    if self.cached:
                        self._cached_edge_index = (edge_index, edge_weight)
                else:
                    edge_index, edge_weight = cache[0], cache[1]

            elif isinstance(edge_index, SparseTensor):
                cache = self._cached_adj_t
                if cache is None:
                    edge_index = gcn_norm(  # yapf: disable
                        edge_index,
                        edge_weight,
                        x.size(self.node_dim),
                        False,
                        self.add_self_loops,
                        self.flow,
                        dtype=x.dtype)
                    if self.cached:
                        self._cached_adj_t = edge_index
                else:
                    edge_index = cache

        h = x
        for k in range(self.K):
            if self.dropout > 0 and self.training:
                if isinstance(edge_index, Tensor):
                    assert edge_weight is not None
                    edge_weight = F.dropout(edge_weight, p=self.dropout)
                else:
                    value = edge_index.storage.value()
                    assert value is not None
                    value = F.dropout(value, p=self.dropout)
                    edge_index = edge_index.set_value(value, layout='coo')

            # propagate_type: (x: Tensor, edge_weight: OptTensor)
            x = self.propagate(edge_index,
                               x=x,
                               edge_weight=edge_weight,
                               size=None)
            x = x * (1 - self.alpha)
            x += self.alpha * h

        return x
Пример #7
0
    def forward(self, x: Union[Tensor, OptPairTensor], edge_index: Adj,
                size: Size = None, return_attention_weights=None):

        H, C = self.heads, self.out_channels

        x_l: OptTensor = None
        x_r: OptTensor = None
        alpha_l: OptTensor = None
        alpha_r: OptTensor = None
        if isinstance(x, Tensor):
            assert x.dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = x_r = x.view(-1, H, C)
            alpha_l = (x_l*self.att_l).sum(dim=-1)
            alpha_r = (x_r*self.att_r).sum(dim=-1)
        else:
            x_l, x_r = x[0], x[1]
            assert x[0].dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = x_l.view(-1, H, C)
            alpha_l = (x_l*self.att_l).sum(dim=-1)
            if x_r is not None:
                x_r = x_r.view(-1, H, C)
                alpha_r = (x_r*self.att_r).sum(dim=-1)

        assert x_l is not None
        assert alpha_l is not None

        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                num_nodes = x_l.size(0)
                if x_r is not None:
                    num_nodes = min(num_nodes, x_r.size(0))
                if size is not None:
                    num_nodes = min(size[0], size[1])
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)
            elif isinstance(edge_index, SparseTensor):
                edge_index = set_diag(edge_index)

        # propagate_type: (x: OptPairTensor, alpha: OptPairTensor)
        out = self.propagate(edge_index, x=(x_l, x_r),
                             alpha=(alpha_l, alpha_r), size=size)

        alpha = self._alpha
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
Пример #8
0
    def forward(self,
                x: Tensor,
                edge_index: Adj,
                edge_type: OptTensor = None,
                edge_attr: OptTensor = None,
                size: Size = None,
                return_attention_weights=None):
        r"""
        Args:
            x (Tensor): The input node features. Can be either a
                :obj:`[num_nodes, in_channels]` node feature matrix, or an
                optional one-dimensional node index tensor (in which case
                input features are treated as trainable node embeddings).
            edge_index (LongTensor or SparseTensor): The edge indices.
            edge_type: The one-dimensional relation type/index for each edge in
                :obj:`edge_index`.
                Should be only :obj:`None` in case :obj:`edge_index` is of type
                :class:`torch_sparse.tensor.SparseTensor`.
                (default: :obj:`None`)
            edge_attr (Tensor, optional): Edge feature matrix.
                (default: :obj:`None`)
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """

        # propagate_type: (x: Tensor, edge_type: OptTensor, edge_attr: OptTensor)  # noqa
        out = self.propagate(edge_index=edge_index,
                             edge_type=edge_type,
                             x=x,
                             size=size,
                             edge_attr=edge_attr)

        alpha = self._alpha
        assert alpha is not None
        self._alpha = None

        if isinstance(return_attention_weights, bool):
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
Пример #9
0
    def forward(self, x: Tensor,
                edge_index: Adj) -> Tuple[Tensor, SparseTensor]:

        adj_t: Optional[SparseTensor] = None
        if isinstance(edge_index, Tensor):
            adj_t = SparseTensor(row=edge_index[1],
                                 col=edge_index[0],
                                 sparse_sizes=(x.size(0), x.size(0)))
        elif isinstance(edge_index, SparseTensor):
            adj_t = edge_index.set_value(None)
        assert adj_t is not None

        adj_t = self.panentropy(adj_t, dtype=x.dtype)

        deg = adj_t.storage.rowcount().to(x.dtype)
        deg_inv_sqrt = deg.pow_(-0.5)
        deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0.
        M = deg_inv_sqrt.view(1, -1) * adj_t * deg_inv_sqrt.view(-1, 1)

        out = self.propagate(M, x=x, edge_weight=None, size=None)
        out = self.lin(out)
        return out, M
Пример #10
0
    def forward(self,
                x: Union[Tensor, PairTensor],
                edge_attr: Tensor,
                edge_index: Adj,
                size: Size = None,
                return_attention_weights: bool = None,
                propagate_messages: bool = True):
        # type: (Union[Tensor, PairTensor], Tensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, PairTensor], SparseTensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, PairTensor], Tensor, Size, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]]  # noqa
        # type: (Union[Tensor, PairTensor], SparseTensor, Size, bool) -> Tuple[Tensor, SparseTensor]  # noqa
        r"""
        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """
        H, C, E = self.heads, self.node_out_channels, self.edge_out_channels

        x_l: OptTensor = None
        x_r: OptTensor = None
        if isinstance(x, Tensor):
            assert x.dim() == 2
            x_l = self.lin_l(x).view(-1, H, C)
            if self.share_weights:
                x_r = x_l
            else:
                x_r = self.lin_r(x).view(-1, H, C)
        else:
            x_l, x_r = x[0], x[1]
            assert x[0].dim() == 2
            x_l = self.lin_l(x_l).view(-1, H, C)
            if x_r is not None:
                x_r = self.lin_r(x_r).view(-1, H, C)

        assert x_l is not None
        assert x_r is not None

        edge_attr = self.lin_e(edge_attr).view(-1, H, E)

        if propagate_messages:
            # propagate_type: (x: PairTensor)
            out = self.propagate(edge_index,
                                 x=(x_l, x_r),
                                 edge_ij=edge_attr,
                                 size=size)
        else:
            out = x_l

        alpha = self._alpha
        self._alpha = None

        if self.concat:
            if self.pna and not propagate_messages:
                out = out.repeat(1, 1,
                                 (len(self.aggregators) * len(self.scalers)))
            out = out.view(-1, self.heads * self.node_pna_channels)
            out = self.node_lin_out(out)

            edge_attr = edge_attr.view(-1, self.heads * self.edge_out_channels)
            edge_attr = self.edge_lin_out(edge_attr)
        else:
            out = out.mean(dim=1)
            edge_attr = edge_attr.mean(dim=1)

            if self.node_bias is not None:
                out += self.node_bias

            if self.edge_bias is not None:
                out += self.edge_bias

            if self.pna:
                out = self.node_lin_out(out)

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, edge_attr, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_attr, edge_index.set_value(alpha,
                                                            layout='coo')
        else:
            return out, edge_attr
Пример #11
0
    def forward(self,
                x: Union[Tensor, OptPairTensor],
                edge_index: Adj,
                edge_attr,
                size: Size = None,
                return_attention_weights=None):
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]]  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, bool) -> Tuple[Tensor, SparseTensor]  # noqa
        r"""
        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """

        H, C = self.heads, self.out_channels

        x_l: OptTensor = None
        x_r: OptTensor = None
        alpha_l: OptTensor = None
        alpha_r: OptTensor = None
        if isinstance(x, Tensor):
            assert x.dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = x_r = self.lin_l(x).view(-1, H, C)
            alpha_l = (x_l * self.att_l).sum(dim=-1)
            alpha_r = (x_r * self.att_r).sum(dim=-1)
        else:
            x_l, x_r = x[0], x[1]
            assert x[0].dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = self.lin_l(x_l).view(-1, H, C)
            alpha_l = (x_l * self.att_l).sum(dim=-1)
            if x_r is not None:
                x_r = self.lin_r(x_r).view(-1, H, C)
                alpha_r = (x_r * self.att_r).sum(dim=-1)

        assert x_l is not None
        assert alpha_l is not None

        # for edge features:
        e = self.lin_e(edge_attr).view(-1, H, C)
        alpha_e = (e * self.att_e).sum(dim=-1)

        # propagate_type: (x: OptPairTensor, alpha: OptPairTensor)
        out = self.propagate(edge_index,
                             x=(x_l, x_r),
                             alpha=(alpha_l, alpha_r),
                             alpha_e=alpha_e,
                             size=size)

        alpha = self._alpha
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if self.bias is not None:
            out += self.bias

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
Пример #12
0
    def forward(self,
                x: Union[Tensor, OptPairTensor],
                edge_index: Adj,
                edge_attr: OptTensor = None,
                size: Size = None,
                return_attention_weights=None):
        # type: (Union[Tensor, OptPairTensor], Tensor, OptTensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, OptTensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], Tensor, OptTensor, Size, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]]  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, OptTensor, Size, bool) -> Tuple[Tensor, SparseTensor]  # noqa
        r"""
        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """
        # NOTE: attention weights will be returned whenever
        # `return_attention_weights` is set to a value, regardless of its
        # actual value (might be `True` or `False`). This is a current somewhat
        # hacky workaround to allow for TorchScript support via the
        # `torch.jit._overload` decorator, as we can only change the output
        # arguments conditioned on type (`None` or `bool`), not based on its
        # actual value.

        H, C = self.heads, self.out_channels

        # We first transform the input node features. If a tuple is passed, we
        # transform source and target node features via separate weights:
        if isinstance(x, Tensor):
            assert x.dim() == 2, "Static graphs not supported in 'GATConv'"
            x_src = x_dst = self.lin_src(x).view(-1, H, C)
        else:  # Tuple of source and target node features:
            x_src, x_dst = x
            assert x_src.dim() == 2, "Static graphs not supported in 'GATConv'"
            x_src = self.lin_src(x_src).view(-1, H, C)
            if x_dst is not None:
                x_dst = self.lin_dst(x_dst).view(-1, H, C)

        x = (x_src, x_dst)

        # Next, we compute node-level attention coefficients, both for source
        # and target nodes (if present):
        alpha_src = (x_src * self.att_src).sum(dim=-1)
        alpha_dst = None if x_dst is None else (x_dst * self.att_dst).sum(-1)
        alpha = (alpha_src, alpha_dst)

        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                # We only want to add self-loops for nodes that appear both as
                # source and target nodes:
                num_nodes = x_src.size(0)
                if x_dst is not None:
                    num_nodes = min(num_nodes, x_dst.size(0))
                num_nodes = min(size) if size is not None else num_nodes
                edge_index, edge_attr = remove_self_loops(
                    edge_index, edge_attr)
                edge_index, edge_attr = add_self_loops(
                    edge_index,
                    edge_attr,
                    fill_value=self.fill_value,
                    num_nodes=num_nodes)
            elif isinstance(edge_index, SparseTensor):
                if self.edge_dim is None:
                    edge_index = set_diag(edge_index)
                else:
                    raise NotImplementedError(
                        "The usage of 'edge_attr' and 'add_self_loops' "
                        "simultaneously is currently not yet supported for "
                        "'edge_index' in a 'SparseTensor' form")

        # propagate_type: (x: OptPairTensor, alpha: OptPairTensor, edge_attr: OptTensor)  # noqa
        out = self.propagate(edge_index,
                             x=x,
                             alpha=alpha,
                             edge_attr=edge_attr,
                             size=size)

        alpha = self._alpha
        assert alpha is not None
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if self.bias is not None:
            out += self.bias

        if isinstance(return_attention_weights, bool):
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
Пример #13
0
    def forward(self,
                x: Union[Tensor, OptPairTensor],
                edge_index: Adj,
                size: Size = None,
                return_attention_weights=None,
                edge_weight=None):
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]]  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, bool) -> Tuple[Tensor, SparseTensor]  # noqa
        r"""

        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """
        H, C = self.heads, self.out_channels

        x_l: OptTensor = None
        x_r: OptTensor = None
        alpha_l: OptTensor = None
        alpha_r: OptTensor = None
        if isinstance(x, Tensor):
            assert x.dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = x_r = self.lin_l(x).view(-1, H, C)
            alpha_l = alpha_r = (x_l * self.att_l).sum(dim=-1)
        else:
            x_l, x_r = x[0], x[1]
            assert x[0].dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = self.lin_l(x_l).view(-1, H, C)
            alpha_l = (x_l * self.att_l).sum(dim=-1)
            if x_r is not None:
                x_r = self.lin_r(x_r).view(-1, H, C)
                alpha_r = (x_r * self.att_r).sum(dim=-1)

        assert x_l is not None
        assert alpha_l is not None

        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                num_nodes = x_l.size(0)
                num_nodes = size[1] if size is not None else num_nodes
                num_nodes = x_r.size(0) if x_r is not None else num_nodes
                edge_index, edge_weight = remove_self_loops(
                    edge_index, edge_attr=edge_weight)
                edge_index, edge_weight = add_self_loops(
                    edge_index, edge_weight=edge_weight, num_nodes=num_nodes)
            elif isinstance(edge_index, SparseTensor):
                edge_index = set_diag(edge_index)

        # propagate_type: (x: OptPairTensor, alpha: OptPairTensor)
        # This is the modified part:
        if edge_weight is None:
            edge_weight = torch.ones((edge_index.size(1), ),
                                     dtype=x.dtype,
                                     device=edge_index.device)
        out = self.propagate(edge_index,
                             x=(x_l, x_r),
                             alpha=(alpha_l, alpha_r),
                             size=size,
                             edge_weight=edge_weight)

        alpha = self._alpha
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if self.bias is not None:
            out += self.bias

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
    def forward(self,
                x: Union[Tensor, OptPairTensor],
                edge_index: Adj,
                size: Size = None,
                return_attention_weights=None,
                layer=None):
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]]  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, bool) -> Tuple[Tensor, SparseTensor]  # noqa
        r"""

        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """
        H, C = self.heads, self.out_channels

        x_l: OptTensor = None
        x_r: OptTensor = None
        alpha_l: OptTensor = None
        alpha_r: OptTensor = None
        if isinstance(x, Tensor):
            assert x.dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = x_r = self.lin_l(x).view(-1, H, C)
            alpha_l = (x_l * self.att_l).sum(dim=-1)
            alpha_r = (x_r * self.att_r).sum(dim=-1)
        else:
            x_l, x_r = x[0], x[1]
            assert x[0].dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = self.lin_l(x_l).view(-1, H, C)
            alpha_l = (x_l * self.att_l).sum(dim=-1)
            if x_r is not None:
                x_r = self.lin_r(x_r).view(-1, H, C)
                alpha_r = (x_r * self.att_r).sum(dim=-1)

        assert x_l is not None
        assert alpha_l is not None

        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                num_nodes = x_l.size(0)
                if x_r is not None:
                    num_nodes = min(num_nodes, x_r.size(0))
                if size is not None:
                    num_nodes = min(size[0], size[1])
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)
            elif isinstance(edge_index, SparseTensor):
                edge_index = set_diag(edge_index)

        # propagate_type: (x: OptPairTensor, alpha: OptPairTensor)
        if layer != None and (layer > 1):
            # propagate_type: (x: Tensor, edge_weight: OptTensor)
            L = math.floor(self.out_channels / layer)
            parts = []
            for i in range(layer - 1):
                parts.append(L)
            parts.append(x_l.shape[-1] - L * (layer - 1))
            parts = tuple(parts)
            xl = x_l.split(parts, dim=-1)
            xr = x_r.split(parts, dim=-1)
            out = self.propagate(edge_index,
                                 x=(xl[0], xr[0]),
                                 alpha=(alpha_l, alpha_r),
                                 size=size)
            for i in range(1, layer):
                out1 = self.propagate(edge_index,
                                      x=(xl[i], xr[i]),
                                      alpha=(alpha_l, alpha_r),
                                      size=size)
                out = torch.cat((out, out1), dim=-1)
        else:
            out = self.propagate(edge_index,
                                 x=(x_l, x_r),
                                 alpha=(alpha_l, alpha_r),
                                 size=size)
        alpha = self._alpha
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if self.bias is not None:
            out += self.bias

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
Пример #15
0
    def forward(self,
                x: Tensor,
                x_0: Tensor,
                edge_index: Adj,
                edge_weight: OptTensor = None,
                return_attention_weights=None):
        # type: (Tensor, Tensor, Tensor, OptTensor, NoneType) -> Tensor  # noqa
        # type: (Tensor, Tensor, SparseTensor, OptTensor, NoneType) -> Tensor  # noqa
        # type: (Tensor, Tensor, Tensor, OptTensor, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]]  # noqa
        # type: (Tensor, Tensor, SparseTensor, OptTensor, bool) -> Tuple[Tensor, SparseTensor]  # noqa
        r"""
        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """
        if self.normalize:
            if isinstance(edge_index, Tensor):
                assert edge_weight is None
                cache = self._cached_edge_index
                if cache is None:
                    edge_index, edge_weight = gcn_norm(  # yapf: disable
                        edge_index,
                        None,
                        x.size(self.node_dim),
                        False,
                        self.add_self_loops,
                        dtype=x.dtype)
                    if self.cached:
                        self._cached_edge_index = (edge_index, edge_weight)
                else:
                    edge_index, edge_weight = cache[0], cache[1]

            elif isinstance(edge_index, SparseTensor):
                assert not edge_index.has_value()
                cache = self._cached_adj_t
                if cache is None:
                    edge_index = gcn_norm(  # yapf: disable
                        edge_index,
                        None,
                        x.size(self.node_dim),
                        False,
                        self.add_self_loops,
                        dtype=x.dtype)
                    if self.cached:
                        self._cached_adj_t = edge_index
                else:
                    edge_index = cache
        else:
            if isinstance(edge_index, Tensor):
                assert edge_weight is not None
            elif isinstance(edge_index, SparseTensor):
                assert edge_index.has_value()

        alpha_l = self.att_l(x)
        alpha_r = self.att_r(x)

        # propagate_type: (x: Tensor, alpha: PairTensor, edge_weight: OptTensor)  # noqa
        out = self.propagate(edge_index,
                             x=x,
                             alpha=(alpha_l, alpha_r),
                             edge_weight=edge_weight,
                             size=None)

        alpha = self._alpha
        self._alpha = None

        if self.eps != 0.0:
            out += self.eps * x_0

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
Пример #16
0
    def forward(self, x: Union[Tensor, PairTensor], edge_index: Adj,
                edge_attr: OptTensor = None, size: Size = None,
                return_attention_weights: bool = None):
        # type: (Union[Tensor, PairTensor], Tensor, OptTensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, PairTensor], SparseTensor, OptTensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, PairTensor], Tensor, OptTensor, Size, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]]  # noqa
        # type: (Union[Tensor, PairTensor], SparseTensor, OptTensor, Size, bool) -> Tuple[Tensor, SparseTensor]  # noqa
        r"""
        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """
        H, C = self.heads, self.out_channels

        x_l: OptTensor = None
        x_r: OptTensor = None
        if isinstance(x, Tensor):
            assert x.dim() == 2
            x_l = self.lin_l(x).view(-1, H, C)
            if self.share_weights:
                x_r = x_l
            else:
                x_r = self.lin_r(x).view(-1, H, C)
        else:
            x_l, x_r = x[0], x[1]
            assert x[0].dim() == 2
            x_l = self.lin_l(x_l).view(-1, H, C)
            if x_r is not None:
                x_r = self.lin_r(x_r).view(-1, H, C)

        assert x_l is not None
        assert x_r is not None

        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                num_nodes = x_l.size(0)
                if x_r is not None:
                    num_nodes = min(num_nodes, x_r.size(0))
                if size is not None:
                    num_nodes = min(size[0], size[1])
                edge_index, edge_attr = remove_self_loops(
                    edge_index, edge_attr)
                edge_index, edge_attr = add_self_loops(
                    edge_index, edge_attr, fill_value=self.fill_value,
                    num_nodes=num_nodes)
            elif isinstance(edge_index, SparseTensor):
                if self.edge_dim is None:
                    edge_index = set_diag(edge_index)
                else:
                    raise NotImplementedError(
                        "The usage of 'edge_attr' and 'add_self_loops' "
                        "simultaneously is currently not yet supported for "
                        "'edge_index' in a 'SparseTensor' form")

        # propagate_type: (x: PairTensor, edge_attr: OptTensor)
        out = self.propagate(edge_index, x=(x_l, x_r), edge_attr=edge_attr,
                             size=size)

        alpha = self._alpha
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if self.bias is not None:
            out += self.bias

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
Пример #17
0
    def forward(self,
                x: Union[Tensor, OptPairTensor],
                edge_index: Adj,
                size: Size = None,
                return_attention_weights=None):
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]]  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, bool) -> Tuple[Tensor, SparseTensor]  # noqa
        r"""

        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """
        H, C = self.heads, self.out_channels

        x_l: OptTensor = None
        x_r: OptTensor = None
        alpha_l: OptTensor = None
        alpha_r: OptTensor = None
        if isinstance(x, Tensor):
            assert x.dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = x_r = self.lin_l(x).view(-1, H, C)
            alpha_l = (x_l * self.att_l).sum(
                dim=-1
            )  # (num_nodes, heads, out_channels) (1, heads, out_channels)
            alpha_r = (x_r * self.att_r).sum(dim=-1)
            if not self.gi_by_gcn:
                alpha_gi = (x_r * self.global_importance_scorer).sum(dim=-1)
        else:
            x_l, x_r = x[0], x[1]
            assert x[0].dim() == 2, 'Static graphs not supported in `GATConv`.'
            x_l = self.lin_l(x_l).view(-1, H, C)
            alpha_l = (x_l * self.att_l).sum(dim=-1)
            if x_r is not None:
                x_r = self.lin_r(x_r).view(-1, H, C)
                alpha_r = (x_r * self.att_r).sum(dim=-1)
                # if not self.gi_by_gcn:
                #     alpha_gi = (x_r * self.global_importance_scorer).sum(dim=-1)

        assert x_l is not None
        assert alpha_l is not None

        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                num_nodes = x_l.size(0)
                if x_r is not None:
                    num_nodes = min(num_nodes, x_r.size(0))
                if size is not None:
                    num_nodes = min(size[0], size[1])
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)
            elif isinstance(edge_index, SparseTensor):
                edge_index = set_diag(edge_index)
        if self.gi_by_gcn:
            alpha_gi = self.global_importance_scorer(
                x_r, edge_index)  # num_nodes, num_heads
        # A_ij + GI_j 因此GI 应当像alpha_j 一样扩展, 我在思考 alpha_i 和alpha_j 的得到方式是不是可以通过这个思路
        # propagate_type: (x: OptPairTensor, alpha: OptPairTensor)
        out = self.propagate(edge_index,
                             x=(x_l, x_r),
                             alpha=(alpha_l, alpha_r),
                             size=size)  # base class 的propagate 调用了message()

        alpha = self._alpha
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if self.bias is not None:
            out += self.bias

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
Пример #18
0
    def forward(self,
                x: Union[Tensor, OptPairTensor],
                edge_index: Adj,
                size: Size = None,
                return_attention_weights=None):
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]]  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, bool) -> Tuple[Tensor, SparseTensor]  # noqa
        r"""
        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """
        H, C = self.heads, self.out_channels

        # We first transform the input node features. If a tuple is passed, we
        # transform source and target node features via separate weights:
        if isinstance(x, Tensor):
            assert x.dim() == 2, "Static graphs not supported in 'GATConv'"
            x_src = x_dst = self.lin_src(x).view(-1, H, C)
        else:  # Tuple of source and target node features:
            x_src, x_dst = x
            assert x_src.dim() == 2, "Static graphs not supported in 'GATConv'"
            x_src = self.lin_src(x_src).view(-1, H, C)
            if x_dst is not None:
                x_dst = self.lin_dst(x_dst).view(-1, H, C)

        x = (x_src, x_dst)

        # Next, we compute node-level attention coefficients, both for source
        # and target nodes (if present):
        alpha_src = (x_src * self.att_src).sum(dim=-1)
        alpha_dst = None if x_dst is None else (x_dst * self.att_dst).sum(-1)
        alpha = (alpha_src, alpha_dst)

        if self.add_self_loops:
            if isinstance(edge_index, Tensor):
                # We only want to add self-loops for nodes that appear both as
                # source and target nodes:
                num_nodes = x_src.size(0)
                if x_dst is not None:
                    num_nodes = min(num_nodes, x_dst.size(0))
                num_nodes = min(size) if size is not None else num_nodes
                edge_index, _ = remove_self_loops(edge_index)
                edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)
            elif isinstance(edge_index, SparseTensor):
                edge_index = set_diag(edge_index)

        # propagate_type: (x: OptPairTensor, alpha: OptPairTensor)
        out = self.propagate(edge_index, x=x, alpha=alpha, size=size)

        alpha = self._alpha
        assert alpha is not None
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if self.bias is not None:
            out += self.bias

        if isinstance(return_attention_weights, bool):
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out
Пример #19
0
    def forward(self, x: Union[Tensor, OptPairTensor], edge_index: Adj, cmd, batch, edge_attr=None,
                size: Size = None, return_attention_weights=None):
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, NoneType) -> Tensor  # noqa
        # type: (Union[Tensor, OptPairTensor], Tensor, Size, bool) -> Tuple[Tensor, Tuple[Tensor, Tensor]]  # noqa
        # type: (Union[Tensor, OptPairTensor], SparseTensor, Size, bool) -> Tuple[Tensor, SparseTensor]  # noqa
        r"""
        Args:
            return_attention_weights (bool, optional): If set to :obj:`True`,
                will additionally return the tuple
                :obj:`(edge_index, attention_weights)`, holding the computed
                attention weights for each edge. (default: :obj:`None`)
        """

        H, C = self.heads, self.out_channels

        x_l: OptTensor = None
        x_r: OptTensor = None
        alpha_l: OptTensor = None
        alpha_r: OptTensor = None

        if isinstance(x, Tensor):
            assert x.dim() == 2, 'Static graphs not supported in `GATConv`.'
            # print(x.shape)
            x_l = self.lin_l(x).view(-1, H, C)  
            x_r = self.lin_r(x).view(-1, H, C)
            # print(x_l.shape)
            # sleep
            proj_cmd = self.proj_cmd(cmd) # (bs, H * C)
            cal_cmd = self.cal_cmd(cmd) # (bs, H * C)
            batch_onehot = F.one_hot(batch).float() # (num_node, bs)
            # print(batch_onehot.shape, proj_cmd.shape)
            proj_cmd = batch_onehot.matmul(proj_cmd).view(-1, H, C) # (num_node, H, C)
            cal_cmd = batch_onehot.matmul(cal_cmd).view(-1, H, C) # (num_node, H, C)
            x_mul = proj_cmd * x_r

            alpha_l = x_l
            alpha_r = x_mul
        # else:
        #     x_l, x_r = x[0], x[1]
        #     assert x[0].dim() == 2, 'Static graphs not supported in `GATConv`.'
        #     x_l = self.lin_l(x_l).view(-1, H, C)
        #     alpha_l = (x_l * self.att_l).sum(dim=-1)
        #     if x_r is not None:
        #         x_r = self.lin_r(x_r).view(-1, H, C)
        #         alpha_r = (x_r * self.att_r).sum(dim=-1)

        assert x_l is not None
        assert alpha_l is not None


        # # for edge features:
        # e = self.lin_e(edge_attr).view(-1, H, C)
        # alpha_e = (e * self.att_e).sum(dim=-1)


        # propagate_type: (x: OptPairTensor, alpha: OptPairTensor)
        out = self.propagate(edge_index, x=x, cmd=cmd, cal_cmd=(cal_cmd, cal_cmd),
                             alpha=(alpha_l, alpha_r), size=size)


        alpha = self._alpha
        self._alpha = None

        if self.concat:
            out = out.view(-1, self.heads * self.out_channels)
        else:
            out = out.mean(dim=1)

        if self.bias is not None:
            out += self.bias

        if isinstance(return_attention_weights, bool):
            assert alpha is not None
            if isinstance(edge_index, Tensor):
                return out, (edge_index, alpha)
            elif isinstance(edge_index, SparseTensor):
                return out, edge_index.set_value(alpha, layout='coo')
        else:
            return out