Пример #1
0
    def __init__(self, option, model_type, dataset, modules):
        super(PointGroup, self).__init__(option)
        backbone_options = option.get("backbone", {"architecture": "unet"})
        self.Backbone = Minkowski(
            backbone_options.architecture,
            input_nc=dataset.feature_dimension,
            num_layers=4,
            config=backbone_options.config,
        )
        self.BackboneHead = Seq().append(FastBatchNorm1d(self.Backbone.output_nc)).append(torch.nn.ReLU())

        self._scorer_is_encoder = option.scorer.architecture == "encoder"
        self._activate_scorer = option.scorer.activate
        self.Scorer = Minkowski(
            option.scorer.architecture, input_nc=self.Backbone.output_nc, num_layers=option.scorer.depth
        )
        self.ScorerHead = Seq().append(torch.nn.Linear(self.Scorer.output_nc, 1)).append(torch.nn.Sigmoid())

        self.Offset = Seq().append(MLP([self.Backbone.output_nc, self.Backbone.output_nc], bias=False))
        self.Offset.append(torch.nn.Linear(self.Backbone.output_nc, 3))

        self.Semantic = (
            Seq()
            .append(MLP([self.Backbone.output_nc, self.Backbone.output_nc], bias=False))
            .append(torch.nn.Linear(self.Backbone.output_nc, dataset.num_classes))
            .append(torch.nn.LogSoftmax())
        )
        self.loss_names = ["loss", "offset_norm_loss", "offset_dir_loss", "semantic_loss", "score_loss"]
        stuff_classes = dataset.stuff_classes
        if is_list(stuff_classes):
            stuff_classes = torch.Tensor(stuff_classes).long()
        self._stuff_classes = torch.cat([torch.tensor([IGNORE_LABEL]), stuff_classes])
Пример #2
0
    def __init__(self, option, model_type, dataset, modules):
        super(PointGroup, self).__init__(option)
        self.Backbone = Minkowski("unet",
                                  input_nc=dataset.feature_dimension,
                                  num_layers=4)

        self._scorer_is_encoder = option.scorer.architecture == "encoder"
        self.Scorer = Minkowski(option.scorer.architecture,
                                input_nc=self.Backbone.output_nc,
                                num_layers=2)
        self.ScorerHead = Seq().append(
            torch.nn.Linear(self.Scorer.output_nc,
                            1)).append(torch.nn.Sigmoid())

        self.Offset = Seq().append(
            MLP([self.Backbone.output_nc, self.Backbone.output_nc],
                bias=False))
        self.Offset.append(torch.nn.Linear(self.Backbone.output_nc, 3))

        self.Semantic = (Seq().append(
            torch.nn.Linear(self.Backbone.output_nc,
                            dataset.num_classes)).append(
                                torch.nn.LogSoftmax()))
        self.loss_names = [
            "loss", "offset_norm_loss", "offset_dir_loss", "semantic_loss",
            "score_loss"
        ]
        self._stuff_classes = torch.cat(
            [torch.tensor([IGNORE_LABEL]), dataset.stuff_classes])
Пример #3
0
    def __init__(self, option, model_type, dataset, modules):
        super(PointGroup, self).__init__(option)
        backbone_options = option.get("backbone", {"architecture": "unet"})
        self.Backbone = Minkowski(
            backbone_options.get("architecture", "unet"),
            input_nc=dataset.feature_dimension,
            num_layers=4,
            config=backbone_options.get("config", {}),
        )

        self._scorer_type = option.get("scorer_type", "encoder")
        cluster_voxel_size = option.get("cluster_voxel_size", 0.05)
        if cluster_voxel_size:
            self._voxelizer = GridSampling3D(cluster_voxel_size,
                                             quantize_coords=True,
                                             mode="mean")
        else:
            self._voxelizer = None
        self.ScorerUnet = Minkowski("unet",
                                    input_nc=self.Backbone.output_nc,
                                    num_layers=4,
                                    config=option.scorer_unet)
        self.ScorerEncoder = Minkowski("encoder",
                                       input_nc=self.Backbone.output_nc,
                                       num_layers=4,
                                       config=option.scorer_encoder)
        self.ScorerMLP = MLP([
            self.Backbone.output_nc, self.Backbone.output_nc,
            self.ScorerUnet.output_nc
        ])
        self.ScorerHead = Seq().append(
            torch.nn.Linear(self.ScorerUnet.output_nc,
                            1)).append(torch.nn.Sigmoid())

        self.Offset = Seq().append(
            MLP([self.Backbone.output_nc, self.Backbone.output_nc],
                bias=False))
        self.Offset.append(torch.nn.Linear(self.Backbone.output_nc, 3))

        self.Semantic = (Seq().append(
            MLP([self.Backbone.output_nc, self.Backbone.output_nc],
                bias=False)).append(
                    torch.nn.Linear(self.Backbone.output_nc,
                                    dataset.num_classes)).append(
                                        torch.nn.LogSoftmax(dim=-1)))
        self.loss_names = [
            "loss", "offset_norm_loss", "offset_dir_loss", "semantic_loss",
            "score_loss"
        ]
        stuff_classes = dataset.stuff_classes
        if is_list(stuff_classes):
            stuff_classes = torch.Tensor(stuff_classes).long()
        self._stuff_classes = torch.cat(
            [torch.tensor([IGNORE_LABEL]), stuff_classes])
Пример #4
0
    def test_minkowski(self):
        from torch_points3d.applications.minkowski import Minkowski

        input_nc = 3
        num_layers = 4
        in_feat = 16
        model = Minkowski(
            architecture="encoder",
            input_nc=input_nc,
            in_feat=in_feat,
            num_layers=num_layers,
            config=None,
        )
        dataset = MockDatasetGeometric(input_nc,
                                       transform=GridSampling3D(
                                           0.01, quantize_coords=True),
                                       num_points=128)
        self.assertEqual(len(model._modules["down_modules"]), num_layers)
        self.assertEqual(len(model._modules["inner_modules"]), 1)
        self.assertFalse(model.has_mlp_head)
        self.assertEqual(model.output_nc, 8 * in_feat)

        try:
            data_out = model.forward(dataset[0])
            # self.assertEqual(data_out.x.shape[1], 8 * in_feat)
        except Exception as e:
            print("Model failing:")
            print(model)
            raise e

        input_nc = 3
        num_layers = 4
        grid_sampling = 0.02
        in_feat = 32
        output_nc = 5
        model = Minkowski(
            architecture="encoder",
            input_nc=input_nc,
            output_nc=output_nc,
            in_feat=in_feat,
            in_grid_size=grid_sampling,
            num_layers=num_layers,
            config=None,
        )
        dataset = MockDatasetGeometric(input_nc,
                                       transform=GridSampling3D(
                                           0.01, quantize_coords=True),
                                       num_points=128)
        self.assertEqual(len(model._modules["down_modules"]), num_layers)
        self.assertEqual(len(model._modules["inner_modules"]), 1)
        self.assertTrue(model.has_mlp_head)
        self.assertEqual(model.output_nc, output_nc)

        try:
            data_out = model.forward(dataset[0])
            self.assertEqual(data_out.x.shape[1], output_nc)
        except Exception as e:
            print("Model failing:")
            print(model)
            raise e
Пример #5
0
 def __init__(self, option, model_type, dataset, modules):
     # call the initialization method of UnetBasedModel
     super().__init__(option)
     self.model = Minkowski("unet", dataset.feature_dimension, 4, output_nc=dataset.num_classes)
     self.loss_names = ["loss_seg"]