Пример #1
0
    def test_amplitude_to_DB_not_channelwise_clamps(self):
        """Check that clamps are applied per-item, not per channel."""
        amplitude_mult = 20.
        amin = 1e-10
        ref = 1.0
        db_mult = math.log10(max(amin, ref))
        top_db = 40.

        torch.manual_seed(0)
        spec = torch.rand([1, 2, 100, 100]) * 200
        # Make one channel blow out the other
        spec[:, 0] += 50

        specwise_dbs = F.amplitude_to_DB(spec,
                                         amplitude_mult,
                                         amin,
                                         db_mult,
                                         top_db=top_db)
        channelwise_dbs = torch.stack([
            F.amplitude_to_DB(spec[:, i],
                              amplitude_mult,
                              amin,
                              db_mult,
                              top_db=top_db) for i in range(spec.size(-3))
        ])

        # Just check channelwise gives a different answer.
        difference = (specwise_dbs - channelwise_dbs).abs()
        assert (difference >= 1e-5).any()
Пример #2
0
    def test_amplitude_to_DB_itemwise_clamps(self):
        """Ensure that the clamps are separate for each spectrogram in a batch.

        The clamp was determined per-batch in a prior implementation, which
        meant it was determined by the loudest item, thus items weren't
        independent. See:

        https://github.com/pytorch/audio/issues/994

        """
        amplitude_mult = 20.
        amin = 1e-10
        ref = 1.0
        db_mult = math.log10(max(amin, ref))
        top_db = 20.

        # Make a batch of noise
        torch.manual_seed(0)
        spec = torch.rand([2, 2, 100, 100]) * 200
        # Make one item blow out the other
        spec[0] += 50

        batchwise_dbs = F.amplitude_to_DB(spec, amplitude_mult, amin,
                                          db_mult, top_db=top_db)
        itemwise_dbs = torch.stack([
            F.amplitude_to_DB(item, amplitude_mult, amin,
                              db_mult, top_db=top_db)
            for item in spec
        ])

        self.assertEqual(batchwise_dbs, itemwise_dbs)
Пример #3
0
    def test_amplitude_to_DB(self):
        spec = torch.rand((6, 201))

        amin = 1e-10
        db_multiplier = 0.0
        top_db = 80.0

        # Power to DB
        multiplier = 10.0

        ta_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier,
                                   top_db)
        lr_out = librosa.core.power_to_db(spec.numpy())
        lr_out = torch.from_numpy(lr_out)

        self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)

        # Amplitude to DB
        multiplier = 20.0

        ta_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier,
                                   top_db)
        lr_out = librosa.core.amplitude_to_db(spec.numpy())
        lr_out = torch.from_numpy(lr_out)

        self.assertEqual(ta_out, lr_out, atol=5e-5, rtol=1e-5)
Пример #4
0
    def test_amplitude_to_DB_reversible(self, shape):
        """Round trip between amplitude and db should return the original for various shape

        This implicitly also tests `DB_to_amplitude`.

        """
        amplitude_mult = 20.
        power_mult = 10.
        amin = 1e-10
        ref = 1.0
        db_mult = math.log10(max(amin, ref))

        torch.manual_seed(0)
        spec = torch.rand(*shape, dtype=self.dtype, device=self.device) * 200

        # Spectrogram amplitude -> DB -> amplitude
        db = F.amplitude_to_DB(spec,
                               amplitude_mult,
                               amin,
                               db_mult,
                               top_db=None)
        x2 = F.DB_to_amplitude(db, ref, 0.5)

        self.assertEqual(x2, spec, atol=5e-5, rtol=1e-5)

        # Spectrogram power -> DB -> power
        db = F.amplitude_to_DB(spec, power_mult, amin, db_mult, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, 1.)

        self.assertEqual(x2, spec)
Пример #5
0
    def test_DB_to_amplitude(self):
        # Make some noise
        x = torch.rand(1000)
        spectrogram = torchaudio.transforms.Spectrogram()
        spec = spectrogram(x)

        amin = 1e-10
        ref = 1.0
        db_multiplier = math.log10(max(amin, ref))

        # Waveform amplitude -> DB -> amplitude
        multiplier = 20.
        power = 0.5

        db = F.amplitude_to_DB(torch.abs(x),
                               multiplier,
                               amin,
                               db_multiplier,
                               top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

        self.assertEqual(x2, torch.abs(x), atol=5e-5, rtol=1e-5)

        # Spectrogram amplitude -> DB -> amplitude
        db = F.amplitude_to_DB(spec,
                               multiplier,
                               amin,
                               db_multiplier,
                               top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

        self.assertEqual(x2, spec, atol=5e-5, rtol=1e-5)

        # Waveform power -> DB -> power
        multiplier = 10.
        power = 1.

        db = F.amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

        self.assertEqual(x2, torch.abs(x), atol=5e-5, rtol=1e-5)

        # Spectrogram power -> DB -> power
        db = F.amplitude_to_DB(spec,
                               multiplier,
                               amin,
                               db_multiplier,
                               top_db=None)
        x2 = F.DB_to_amplitude(db, ref, power)

        self.assertEqual(x2, spec, atol=5e-5, rtol=1e-5)
 def func(tensor):
     multiplier = 10.0
     amin = 1e-10
     db_multiplier = 0.0
     top_db = 80.0
     return F.amplitude_to_DB(tensor, multiplier, amin, db_multiplier,
                              top_db)
Пример #7
0
    def test_amplitude_to_DB_top_db_clamp(self, shape):
        """Ensure values are properly clamped when `top_db` is supplied."""
        amplitude_mult = 20.
        amin = 1e-10
        ref = 1.0
        db_mult = math.log10(max(amin, ref))
        top_db = 40.

        torch.manual_seed(0)
        # A random tensor is used for increased entropy, but the max and min for
        # each spectrogram still need to be predictable. The max determines the
        # decibel cutoff, and the distance from the min must be large enough
        # that it triggers a clamp.
        spec = torch.rand(*shape, dtype=self.dtype, device=self.device)
        # Ensure each spectrogram has a min of 0 and a max of 1.
        spec -= spec.amin([-2, -1])[..., None, None]
        spec /= spec.amax([-2, -1])[..., None, None]
        # Expand the range to (0, 200) - wide enough to properly test clamping.
        spec *= 200

        decibels = F.amplitude_to_DB(spec,
                                     amplitude_mult,
                                     amin,
                                     db_mult,
                                     top_db=top_db)
        # Ensure the clamp was applied
        below_limit = decibels < 6.0205
        assert not below_limit.any(), (
            "{} decibel values were below the expected cutoff:\n{}".format(
                below_limit.sum().item(), decibels))
        # Ensure it didn't over-clamp
        close_to_limit = decibels < 6.0207
        assert close_to_limit.any(), (
            f"No values were close to the limit. Did it over-clamp?\n{decibels}"
        )
Пример #8
0
def spec_to_db(x_spec, top_db=80, amin=1e-5):
    x_spec = x_spec.transpose(-3, -1).contiguous()
    x_spec = torch.view_as_complex(x_spec)
    x_mag = torch.abs(x_spec)
    x_db = amplitude_to_DB(x_mag,
                           multiplier=20.,
                           amin=amin,
                           db_multiplier=math.log10(max(amin, 1.)),
                           top_db=top_db)
    return x_db
    def test_amplitude_to_DB(self):
        amin = 1e-10
        db_multiplier = 0.0
        top_db = 80.0
        multiplier = 20.0

        spec = get_spectrogram(get_whitenoise(device=self.device, dtype=self.dtype), power=1)
        result = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)
        expected = librosa.core.amplitude_to_db(spec[0].cpu().numpy())[None, ...]
        self.assertEqual(result, torch.from_numpy(expected))
Пример #10
0
    def forward(self, x: Tensor) -> Tensor:
        r"""Numerically stable implementation from Librosa.
        https://librosa.github.io/librosa/_modules/librosa/core/spectrum.html

        Args:
            x (Tensor): Input tensor before being converted to decibel scale.

        Returns:
            Tensor: Output tensor in decibel scale.
        """
        return F.amplitude_to_DB(x, self.multiplier, self.amin, self.db_multiplier, self.top_db)
Пример #11
0
    def forward(self, x: Tensor) -> Tensor:
        r"""Numerically stable implementation from Librosa.

        https://librosa.org/doc/latest/generated/librosa.amplitude_to_db.html

        Args:
            x (Tensor): Input tensor before being converted to decibel scale.

        Returns:
            Tensor: Output tensor in decibel scale.
        """
        return F.amplitude_to_DB(x, self.multiplier, self.amin, self.db_multiplier, self.top_db)
Пример #12
0
    def test_torchscript_amplitude_to_DB(self):
        @torch.jit.script
        def jit_method(spec, multiplier, amin, db_multiplier, top_db):
            # type: (Tensor, float, float, float, Optional[float]) -> Tensor
            return F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)

        spec = torch.rand((6, 201))
        multiplier = 10.
        amin = 1e-10
        db_multiplier = 0.
        top_db = 80.

        jit_out = jit_method(spec, multiplier, amin, db_multiplier, top_db)
        py_out = F.amplitude_to_DB(spec, multiplier, amin, db_multiplier, top_db)

        self.assertTrue(torch.allclose(jit_out, py_out))
Пример #13
0
 def jit_method(spec, multiplier, amin, db_multiplier, top_db):
     # type: (Tensor, float, float, float, Optional[float]) -> Tensor
     return F.amplitude_to_DB(spec, multiplier, amin, db_multiplier,
                              top_db)
Пример #14
0
 def __call__(self, x_spec):
     x_mag = ConvToMag()(x_spec)
     x_db = amplitude_to_DB(x_mag, multiplier=20., amin=1e-5, db_multiplier=math.log10(max(1e-5, 1.)), top_db=120.)
     return x_db