def _download(self, root): if not os.path.isdir("{root}/wikitext-103".format(root=self.root)): archive_dict = ARCHIVE_DICT["full"] download_and_extract_archive( archive_dict["url"], self.root, extract_root=self.root, md5=archive_dict["md5"], ) if not os.path.isfile(self.file): file_zip = os.path.join(root, "wikitext-103-v1.zip") if os.path.isfile(file_zip): extract_archive(from_path=file_zip, to_path=root)
def _download(self, root, annFile): if not os.path.isdir(root) or os.path.isdir(annFile): if '2017' in root: image_dir_zip = os.path.join(up(root), 'val2017.zip') elif '2014' in root: image_dir_zip = os.path.join(up(root), 'val2014.zip') if '2017' in annFile: annotations_dir_zip = os.path.join( up(up(annFile)), 'annotations_trainval2017.zip') elif '2014' in annFile: annotations_dir_zip = os.path.join( up(up(annFile)), 'annotations_trainval2014.zip') if os.path.isfile(image_dir_zip) and os.path.isfile( annotations_dir_zip): extract_archive(from_path=image_dir_zip, to_path=up(root)) extract_archive(from_path=annotations_dir_zip, to_path=up(root))
def _download(self, root, annFile): if not os.path.isdir(root) or not os.path.isdir(annFile): if "2017" in root: image_dir_zip = os.path.join(up(root), "val2017.zip") elif "2014" in root: image_dir_zip = os.path.join(up(root), "val2014.zip") else: image_dir_zip = None if "2017" in annFile: annotations_dir_zip = os.path.join( up(up(annFile)), "annotations_trainval2017.zip") elif "2014" in annFile: annotations_dir_zip = os.path.join( up(up(annFile)), "annotations_trainval2014.zip") else: annotations_dir_zip = None if (image_dir_zip is not None and os.path.isfile(image_dir_zip) and annotations_dir_zip is not None and os.path.isfile(annotations_dir_zip)): extract_archive(from_path=image_dir_zip, to_path=up(root)) extract_archive(from_path=annotations_dir_zip, to_path=up(root))
def _download(self, root): if not os.path.isfile(self.file): file_zip = os.path.join(root, "CoNLL2003.zip") if os.path.isfile(file_zip): extract_archive(from_path=file_zip, to_path=root)
import copy import mmcv import torch import torch.distributed as dist from mmcv.runner import load_checkpoint, get_dist_info from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmdet.apis import init_dist from mmdet.core import coco_eval, wrap_fp16_model from mmdet.datasets import build_dataloader, get_dataset from mmdet.models import build_detector # Extract val2017 zip from torchbench.utils import extract_archive image_dir_zip = osp.join('./.data/vision/coco', 'val2017.zip') extract_archive(from_path=image_dir_zip, to_path='./.data/vision/coco') def xyxy2xywh(bbox): _bbox = bbox.tolist() return [ _bbox[0], _bbox[1], _bbox[2] - _bbox[0] + 1, _bbox[3] - _bbox[1] + 1, ] def proposal2json(dataset, results): json_results = [] for idx in range(len(dataset)):