Пример #1
0
    def train(self) -> None:

        holder = self.holder
        config = self.config
        iteration_manager = self.iteration_manager

        total_buckets = holder.nparts_lhs * holder.nparts_rhs

        # yield stats from checkpoint, to reconstruct
        # saved part of the learning curve
        if self.rank == SINGLE_TRAINER:
            for stats_dict in self.checkpoint_manager.maybe_read_stats():
                index: int = stats_dict["index"]
                stats: Optional[Stats] = None
                if "stats" in stats_dict:
                    stats: Stats = Stats.from_dict(stats_dict["stats"])
                eval_stats_before: Optional[Stats] = None
                if "eval_stats_before" in stats_dict:
                    eval_stats_before = Stats.from_dict(stats_dict["eval_stats_before"])
                eval_stats_after: Optional[Stats] = None
                if "eval_stats_after" in stats_dict:
                    eval_stats_after = Stats.from_dict(stats_dict["eval_stats_after"])
                eval_stats_chunk_avg: Optional[Stats] = None
                if "eval_stats_chunk_avg" in stats_dict:
                    eval_stats_chunk_avg = Stats.from_dict(
                        stats_dict["eval_stats_chunk_avg"]
                    )
                self.stats_handler.on_stats(
                    index,
                    eval_stats_before,
                    stats,
                    eval_stats_after,
                    eval_stats_chunk_avg,
                )

        for epoch_idx, edge_path_idx, edge_chunk_idx in iteration_manager:
            logger.info(
                f"Starting epoch {epoch_idx + 1} / {iteration_manager.num_epochs}, "
                f"edge path {edge_path_idx + 1} / {iteration_manager.num_edge_paths}, "
                f"edge chunk {edge_chunk_idx + 1} / {iteration_manager.num_edge_chunks}"
            )
            edge_storage = EDGE_STORAGES.make_instance(iteration_manager.edge_path)
            logger.info(f"Edge path: {iteration_manager.edge_path}")

            self._barrier()
            dist_logger.info("Lock client new epoch...")
            self.bucket_scheduler.new_pass(
                is_first=iteration_manager.iteration_idx == 0
            )
            self._barrier()

            remaining = total_buckets
            cur_b: Optional[Bucket] = None
            cur_stats: Optional[BucketStats] = None
            while remaining > 0:
                old_b: Optional[Bucket] = cur_b
                old_stats: Optional[BucketStats] = cur_stats
                cur_b, remaining = self.bucket_scheduler.acquire_bucket()
                logger.info(f"still in queue: {remaining}")
                if cur_b is None:
                    cur_stats = None
                    if old_b is not None:
                        # if you couldn't get a new pair, release the lock
                        # to prevent a deadlock!
                        tic = time.perf_counter()
                        release_bytes = self._swap_partitioned_embeddings(
                            old_b, None, old_stats
                        )
                        release_time = time.perf_counter() - tic
                        logger.info(
                            f"Swapping old embeddings to release lock. io: {release_time:.2f} s for {release_bytes:,} bytes "
                            f"( {release_bytes / release_time / 1e6:.2f} MB/sec )"
                        )
                    time.sleep(1)  # don't hammer td
                    continue

                tic = time.perf_counter()
                self.cur_b = cur_b
                bucket_logger = BucketLogger(logger, bucket=cur_b)
                self.bucket_logger = bucket_logger

                io_bytes = self._swap_partitioned_embeddings(old_b, cur_b, old_stats)
                self.model.set_all_embeddings(holder, cur_b)

                current_index = (
                    iteration_manager.iteration_idx + 1
                ) * total_buckets - remaining

                bucket_logger.debug("Loading edges")
                edges = edge_storage.load_chunk_of_edges(
                    cur_b.lhs,
                    cur_b.rhs,
                    edge_chunk_idx,
                    iteration_manager.num_edge_chunks,
                    shared=True,
                )
                num_edges = len(edges)

                # this might be off in the case of tensorlist or extra edge fields
                io_bytes += edges.lhs.tensor.numel() * edges.lhs.tensor.element_size()
                io_bytes += edges.rhs.tensor.numel() * edges.rhs.tensor.element_size()
                io_bytes += edges.rel.numel() * edges.rel.element_size()
                io_time = time.perf_counter() - tic
                tic = time.perf_counter()
                bucket_logger.debug("Shuffling edges")
                # Fix a seed to get the same permutation every time; have it
                # depend on all and only what affects the set of edges.

                # Note: for the sake of efficiency, we sample eval edge idxs
                # from the edge set *with replacement*, meaning that there may
                # be duplicates of the same edge in the eval set. When we swap
                # edges into the eval set, if there are duplicates then all
                # but one will be clobbered. These collisions are unlikely
                # if eval_fraction is small.
                #
                # Importantly, this eval sampling strategy is theoretically
                # sound:
                # * Training and eval sets are (exactly) disjoint
                # * Eval set may have (rare) duplicates, but they are
                #   uniformly sampled so it's still an unbiased estimator
                #   of the out-of-sample statistics
                num_eval_edges = int(num_edges * config.eval_fraction)
                num_train_edges = num_edges - num_eval_edges
                if num_eval_edges > 0:
                    g = torch.Generator()
                    g.manual_seed(
                        hash((edge_path_idx, edge_chunk_idx, cur_b.lhs, cur_b.rhs))
                    )
                    eval_edge_idxs = torch.randint(
                        num_edges, (num_eval_edges,), dtype=torch.long, generator=g
                    )
                else:
                    eval_edge_idxs = None

                # HOGWILD evaluation before training
                eval_stats_before = self._coordinate_eval(edges, eval_edge_idxs)
                if eval_stats_before is not None:
                    bucket_logger.info(f"Stats before training: {eval_stats_before}")
                eval_time = time.perf_counter() - tic
                tic = time.perf_counter()

                # HOGWILD training
                bucket_logger.debug("Waiting for workers to perform training")
                stats = self._coordinate_train(edges, eval_edge_idxs, epoch_idx)
                if stats is not None:
                    bucket_logger.info(f"Training stats: {stats}")
                train_time = time.perf_counter() - tic
                tic = time.perf_counter()

                # HOGWILD evaluation after training
                eval_stats_after = self._coordinate_eval(edges, eval_edge_idxs)
                if eval_stats_after is not None:
                    bucket_logger.info(f"Stats after training: {eval_stats_after}")

                eval_time += time.perf_counter() - tic

                bucket_logger.info(
                    f"bucket {total_buckets - remaining} / {total_buckets} : "
                    f"Trained {num_train_edges} edges in {train_time:.2f} s "
                    f"( {num_train_edges / train_time / 1e6:.2g} M/sec ); "
                    f"Eval 2*{num_eval_edges} edges in {eval_time:.2f} s "
                    f"( {2 * num_eval_edges / eval_time / 1e6:.2g} M/sec ); "
                    f"io: {io_time:.2f} s for {io_bytes:,} bytes ( {io_bytes / io_time / 1e6:.2f} MB/sec )"
                )

                self.model.clear_all_embeddings()

                cur_stats = BucketStats(
                    lhs_partition=cur_b.lhs,
                    rhs_partition=cur_b.rhs,
                    index=current_index,
                    train=stats,
                    eval_before=eval_stats_before,
                    eval_after=eval_stats_after,
                )

            # release the final bucket
            self._swap_partitioned_embeddings(cur_b, None, cur_stats)

            # Distributed Processing: all machines can leave the barrier now.
            self._barrier()

            current_index = (iteration_manager.iteration_idx + 1) * total_buckets - 1

            self._maybe_write_checkpoint(
                epoch_idx, edge_path_idx, edge_chunk_idx, current_index
            )

            # now we're sure that all partition files exist,
            # so be strict about loading them
            self.strict = True
Пример #2
0
def train_and_report_stats(
    config: ConfigSchema,
    model: Optional[MultiRelationEmbedder] = None,
    trainer: Optional[AbstractBatchProcessor] = None,
    evaluator: Optional[AbstractBatchProcessor] = None,
    rank: Rank = RANK_ZERO,
    subprocess_init: Optional[Callable[[], None]] = None,
) -> Generator[Tuple[int, Optional[Stats], Stats, Optional[Stats]], None,
               None]:
    """Each epoch/pass, for each partition pair, loads in embeddings and edgelist
    from disk, runs HOGWILD training on them, and writes partitions back to disk.
    """
    tag_logs_with_process_name(f"Trainer-{rank}")

    if config.verbose > 0:
        import pprint
        pprint.PrettyPrinter().pprint(config.to_dict())

    logger.info("Loading entity counts...")
    entity_storage = ENTITY_STORAGES.make_instance(config.entity_path)
    entity_counts: Dict[str, List[int]] = {}
    for entity, econf in config.entities.items():
        entity_counts[entity] = []
        for part in range(econf.num_partitions):
            entity_counts[entity].append(
                entity_storage.load_count(entity, part))

    # Figure out how many lhs and rhs partitions we need
    nparts_lhs, lhs_partitioned_types = get_partitioned_types(config, Side.LHS)
    nparts_rhs, rhs_partitioned_types = get_partitioned_types(config, Side.RHS)
    logger.debug(f"nparts {nparts_lhs} {nparts_rhs} "
                 f"types {lhs_partitioned_types} {rhs_partitioned_types}")
    total_buckets = nparts_lhs * nparts_rhs

    sync: AbstractSynchronizer
    bucket_scheduler: AbstractBucketScheduler
    parameter_sharer: Optional[ParameterSharer]
    partition_client: Optional[PartitionClient]
    if config.num_machines > 1:
        if not 0 <= rank < config.num_machines:
            raise RuntimeError("Invalid rank for trainer")
        if not td.is_available():
            raise RuntimeError("The installed PyTorch version doesn't provide "
                               "distributed training capabilities.")
        ranks = ProcessRanks.from_num_invocations(config.num_machines,
                                                  config.num_partition_servers)

        if rank == RANK_ZERO:
            logger.info("Setup lock server...")
            start_server(
                LockServer(
                    num_clients=len(ranks.trainers),
                    nparts_lhs=nparts_lhs,
                    nparts_rhs=nparts_rhs,
                    lock_lhs=len(lhs_partitioned_types) > 0,
                    lock_rhs=len(rhs_partitioned_types) > 0,
                    init_tree=config.distributed_tree_init_order,
                ),
                process_name="LockServer",
                init_method=config.distributed_init_method,
                world_size=ranks.world_size,
                server_rank=ranks.lock_server,
                groups=[ranks.trainers],
                subprocess_init=subprocess_init,
            )

        bucket_scheduler = DistributedBucketScheduler(
            server_rank=ranks.lock_server,
            client_rank=ranks.trainers[rank],
        )

        logger.info("Setup param server...")
        start_server(
            ParameterServer(num_clients=len(ranks.trainers)),
            process_name=f"ParamS-{rank}",
            init_method=config.distributed_init_method,
            world_size=ranks.world_size,
            server_rank=ranks.parameter_servers[rank],
            groups=[ranks.trainers],
            subprocess_init=subprocess_init,
        )

        parameter_sharer = ParameterSharer(
            process_name=f"ParamC-{rank}",
            client_rank=ranks.parameter_clients[rank],
            all_server_ranks=ranks.parameter_servers,
            init_method=config.distributed_init_method,
            world_size=ranks.world_size,
            groups=[ranks.trainers],
            subprocess_init=subprocess_init,
        )

        if config.num_partition_servers == -1:
            start_server(
                ParameterServer(num_clients=len(ranks.trainers),
                                log_stats=True),
                process_name=f"PartS-{rank}",
                init_method=config.distributed_init_method,
                world_size=ranks.world_size,
                server_rank=ranks.partition_servers[rank],
                groups=[ranks.trainers],
                subprocess_init=subprocess_init,
            )

        if len(ranks.partition_servers) > 0:
            partition_client = PartitionClient(ranks.partition_servers,
                                               log_stats=True)
        else:
            partition_client = None

        groups = init_process_group(
            rank=ranks.trainers[rank],
            world_size=ranks.world_size,
            init_method=config.distributed_init_method,
            groups=[ranks.trainers],
        )
        trainer_group, = groups
        sync = DistributedSynchronizer(trainer_group)

    else:
        sync = DummySynchronizer()
        bucket_scheduler = SingleMachineBucketScheduler(
            nparts_lhs, nparts_rhs, config.bucket_order)
        parameter_sharer = None
        partition_client = None
        hide_distributed_logging()

    # fork early for HOGWILD threads
    logger.info("Creating workers...")
    num_workers = get_num_workers(config.workers)
    pool = create_pool(
        num_workers,
        subprocess_name=f"TWorker-{rank}",
        subprocess_init=subprocess_init,
    )

    def make_optimizer(params: Iterable[torch.nn.Parameter],
                       is_emb: bool) -> Optimizer:
        params = list(params)
        if len(params) == 0:
            optimizer = DummyOptimizer()
        elif is_emb:
            optimizer = RowAdagrad(params, lr=config.lr)
        else:
            if config.relation_lr is not None:
                lr = config.relation_lr
            else:
                lr = config.lr
            optimizer = Adagrad(params, lr=lr)
        optimizer.share_memory()
        return optimizer

    # background_io is only supported in single-machine mode
    background_io = config.background_io and config.num_machines == 1

    checkpoint_manager = CheckpointManager(
        config.checkpoint_path,
        background=background_io,
        rank=rank,
        num_machines=config.num_machines,
        partition_client=partition_client,
        subprocess_name=f"BackgRW-{rank}",
        subprocess_init=subprocess_init,
    )
    checkpoint_manager.register_metadata_provider(
        ConfigMetadataProvider(config))
    checkpoint_manager.write_config(config)

    if config.num_edge_chunks is not None:
        num_edge_chunks = config.num_edge_chunks
    else:
        num_edge_chunks = get_num_edge_chunks(config.edge_paths, nparts_lhs,
                                              nparts_rhs,
                                              config.max_edges_per_chunk)
    iteration_manager = IterationManager(
        config.num_epochs,
        config.edge_paths,
        num_edge_chunks,
        iteration_idx=checkpoint_manager.checkpoint_version)
    checkpoint_manager.register_metadata_provider(iteration_manager)

    if config.init_path is not None:
        loadpath_manager = CheckpointManager(config.init_path)
    else:
        loadpath_manager = None

    def load_embeddings(
        entity: EntityName,
        part: Partition,
        strict: bool = False,
        force_dirty: bool = False,
    ) -> Tuple[torch.nn.Parameter, Optional[OptimizerStateDict]]:
        if strict:
            embs, optim_state = checkpoint_manager.read(
                entity, part, force_dirty=force_dirty)
        else:
            # Strict is only false during the first iteration, because in that
            # case the checkpoint may not contain any data (unless a previous
            # run was resumed) so we fall back on initial values.
            embs, optim_state = checkpoint_manager.maybe_read(
                entity, part, force_dirty=force_dirty)
            if embs is None and loadpath_manager is not None:
                embs, optim_state = loadpath_manager.maybe_read(entity, part)
            if embs is None:
                embs, optim_state = init_embs(entity,
                                              entity_counts[entity][part],
                                              config.dimension,
                                              config.init_scale)
        assert embs.is_shared()
        return torch.nn.Parameter(embs), optim_state

    logger.info("Initializing global model...")

    if model is None:
        model = make_model(config)
    model.share_memory()
    if trainer is None:
        trainer = Trainer(
            global_optimizer=make_optimizer(model.parameters(), False),
            loss_fn=config.loss_fn,
            margin=config.margin,
            relations=config.relations,
        )
    if evaluator is None:
        evaluator = TrainingRankingEvaluator(
            override_num_batch_negs=config.eval_num_batch_negs,
            override_num_uniform_negs=config.eval_num_uniform_negs,
        )
    eval_batch_size = round_up_to_nearest_multiple(config.batch_size,
                                                   config.eval_num_batch_negs)

    state_dict, optim_state = checkpoint_manager.maybe_read_model()

    if state_dict is None and loadpath_manager is not None:
        state_dict, optim_state = loadpath_manager.maybe_read_model()
    if state_dict is not None:
        model.load_state_dict(state_dict, strict=False)
    if optim_state is not None:
        trainer.global_optimizer.load_state_dict(optim_state)

    logger.debug("Loading unpartitioned entities...")
    for entity, econfig in config.entities.items():
        if econfig.num_partitions == 1:
            embs, optim_state = load_embeddings(entity, Partition(0))
            model.set_embeddings(entity, embs, Side.LHS)
            model.set_embeddings(entity, embs, Side.RHS)
            optimizer = make_optimizer([embs], True)
            if optim_state is not None:
                optimizer.load_state_dict(optim_state)
            trainer.entity_optimizers[(entity, Partition(0))] = optimizer

    # start communicating shared parameters with the parameter server
    if parameter_sharer is not None:
        parameter_sharer.share_model_params(model)

    strict = False

    def swap_partitioned_embeddings(
        old_b: Optional[Bucket],
        new_b: Optional[Bucket],
    ):
        # 0. given the old and new buckets, construct data structures to keep
        #    track of old and new embedding (entity, part) tuples

        io_bytes = 0
        logger.info(f"Swapping partitioned embeddings {old_b} {new_b}")

        types = ([(e, Side.LHS) for e in lhs_partitioned_types] +
                 [(e, Side.RHS) for e in rhs_partitioned_types])
        old_parts = {(e, old_b.get_partition(side)): side
                     for e, side in types if old_b is not None}
        new_parts = {(e, new_b.get_partition(side)): side
                     for e, side in types if new_b is not None}

        to_checkpoint = set(old_parts) - set(new_parts)
        preserved = set(old_parts) & set(new_parts)

        # 1. checkpoint embeddings that will not be used in the next pair
        #
        if old_b is not None:  # there are previous embeddings to checkpoint
            logger.info("Writing partitioned embeddings")
            for entity, part in to_checkpoint:
                side = old_parts[(entity, part)]
                side_name = side.pick("lhs", "rhs")
                logger.debug(f"Checkpointing ({entity} {part} {side_name})")
                embs = model.get_embeddings(entity, side)
                optim_key = (entity, part)
                optim_state = OptimizerStateDict(
                    trainer.entity_optimizers[optim_key].state_dict())
                io_bytes += embs.numel() * embs.element_size(
                )  # ignore optim state
                checkpoint_manager.write(entity, part, embs.detach(),
                                         optim_state)
                if optim_key in trainer.entity_optimizers:
                    del trainer.entity_optimizers[optim_key]
                # these variables are holding large objects; let them be freed
                del embs
                del optim_state

            bucket_scheduler.release_bucket(old_b)

        # 2. copy old embeddings that will be used in the next pair
        #    into a temporary dictionary
        #
        tmp_emb = {
            x: model.get_embeddings(x[0], old_parts[x])
            for x in preserved
        }

        for entity, _ in types:
            model.clear_embeddings(entity, Side.LHS)
            model.clear_embeddings(entity, Side.RHS)

        if new_b is None:  # there are no new embeddings to load
            return io_bytes

        bucket_logger = BucketLogger(logger, bucket=new_b)

        # 3. load new embeddings into the model/optimizer, either from disk
        #    or the temporary dictionary
        #
        bucket_logger.info("Loading entities")
        for entity, side in types:
            part = new_b.get_partition(side)
            part_key = (entity, part)
            if part_key in tmp_emb:
                bucket_logger.debug(
                    f"Loading ({entity}, {part}) from preserved")
                embs, optim_state = tmp_emb[part_key], None
            else:
                bucket_logger.debug(f"Loading ({entity}, {part})")

                force_dirty = bucket_scheduler.check_and_set_dirty(
                    entity, part)
                embs, optim_state = load_embeddings(entity,
                                                    part,
                                                    strict=strict,
                                                    force_dirty=force_dirty)
                io_bytes += embs.numel() * embs.element_size(
                )  # ignore optim state

            model.set_embeddings(entity, embs, side)
            tmp_emb[part_key] = embs

            optim_key = (entity, part)
            if optim_key not in trainer.entity_optimizers:
                bucket_logger.debug(f"Resetting optimizer {optim_key}")
                optimizer = make_optimizer([embs], True)
                if optim_state is not None:
                    bucket_logger.debug("Setting optim state")
                    optimizer.load_state_dict(optim_state)

                trainer.entity_optimizers[optim_key] = optimizer

        return io_bytes

    if rank == RANK_ZERO:
        for stats_dict in checkpoint_manager.maybe_read_stats():
            index: int = stats_dict["index"]
            stats: Stats = Stats.from_dict(stats_dict["stats"])
            eval_stats_before: Optional[Stats] = None
            if "eval_stats_before" in stats_dict:
                eval_stats_before = Stats.from_dict(
                    stats_dict["eval_stats_before"])
            eval_stats_after: Optional[Stats] = None
            if "eval_stats_after" in stats_dict:
                eval_stats_after = Stats.from_dict(
                    stats_dict["eval_stats_after"])
            yield (index, eval_stats_before, stats, eval_stats_after)

    # Start of the main training loop.
    for epoch_idx, edge_path_idx, edge_chunk_idx in iteration_manager:
        logger.info(
            f"Starting epoch {epoch_idx + 1} / {iteration_manager.num_epochs}, "
            f"edge path {edge_path_idx + 1} / {iteration_manager.num_edge_paths}, "
            f"edge chunk {edge_chunk_idx + 1} / {iteration_manager.num_edge_chunks}"
        )
        edge_storage = EDGE_STORAGES.make_instance(iteration_manager.edge_path)
        logger.info(f"Edge path: {iteration_manager.edge_path}")

        sync.barrier()
        dist_logger.info("Lock client new epoch...")
        bucket_scheduler.new_pass(
            is_first=iteration_manager.iteration_idx == 0)
        sync.barrier()

        remaining = total_buckets
        cur_b = None
        while remaining > 0:
            old_b = cur_b
            io_time = 0.
            io_bytes = 0
            cur_b, remaining = bucket_scheduler.acquire_bucket()
            logger.info(f"still in queue: {remaining}")
            if cur_b is None:
                if old_b is not None:
                    # if you couldn't get a new pair, release the lock
                    # to prevent a deadlock!
                    tic = time.time()
                    io_bytes += swap_partitioned_embeddings(old_b, None)
                    io_time += time.time() - tic
                time.sleep(1)  # don't hammer td
                continue

            bucket_logger = BucketLogger(logger, bucket=cur_b)

            tic = time.time()

            io_bytes += swap_partitioned_embeddings(old_b, cur_b)

            current_index = \
                (iteration_manager.iteration_idx + 1) * total_buckets - remaining

            next_b = bucket_scheduler.peek()
            if next_b is not None and background_io:
                # Ensure the previous bucket finished writing to disk.
                checkpoint_manager.wait_for_marker(current_index - 1)

                bucket_logger.debug("Prefetching")
                for entity in lhs_partitioned_types:
                    checkpoint_manager.prefetch(entity, next_b.lhs)
                for entity in rhs_partitioned_types:
                    checkpoint_manager.prefetch(entity, next_b.rhs)

                checkpoint_manager.record_marker(current_index)

            bucket_logger.debug("Loading edges")
            edges = edge_storage.load_chunk_of_edges(
                cur_b.lhs, cur_b.rhs, edge_chunk_idx,
                iteration_manager.num_edge_chunks)
            num_edges = len(edges)
            # this might be off in the case of tensorlist or extra edge fields
            io_bytes += edges.lhs.tensor.numel(
            ) * edges.lhs.tensor.element_size()
            io_bytes += edges.rhs.tensor.numel(
            ) * edges.rhs.tensor.element_size()
            io_bytes += edges.rel.numel() * edges.rel.element_size()

            bucket_logger.debug("Shuffling edges")
            # Fix a seed to get the same permutation every time; have it
            # depend on all and only what affects the set of edges.
            g = torch.Generator()
            g.manual_seed(
                hash((edge_path_idx, edge_chunk_idx, cur_b.lhs, cur_b.rhs)))

            num_eval_edges = int(num_edges * config.eval_fraction)
            if num_eval_edges > 0:
                edge_perm = torch.randperm(num_edges, generator=g)
                eval_edge_perm = edge_perm[-num_eval_edges:]
                num_edges -= num_eval_edges
                edge_perm = edge_perm[torch.randperm(num_edges)]
            else:
                edge_perm = torch.randperm(num_edges)

            # HOGWILD evaluation before training
            eval_stats_before: Optional[Stats] = None
            if num_eval_edges > 0:
                bucket_logger.debug(
                    "Waiting for workers to perform evaluation")
                future_all_eval_stats_before = pool.map_async(
                    call, [
                        partial(
                            process_in_batches,
                            batch_size=eval_batch_size,
                            model=model,
                            batch_processor=evaluator,
                            edges=edges,
                            indices=eval_edge_perm[s],
                        ) for s in split_almost_equally(eval_edge_perm.size(0),
                                                        num_parts=num_workers)
                    ])
                all_eval_stats_before = \
                    get_async_result(future_all_eval_stats_before, pool)
                eval_stats_before = Stats.sum(all_eval_stats_before).average()
                bucket_logger.info(
                    f"Stats before training: {eval_stats_before}")

            io_time += time.time() - tic
            tic = time.time()
            # HOGWILD training
            bucket_logger.debug("Waiting for workers to perform training")
            # FIXME should we only delay if iteration_idx == 0?
            future_all_stats = pool.map_async(call, [
                partial(
                    process_in_batches,
                    batch_size=config.batch_size,
                    model=model,
                    batch_processor=trainer,
                    edges=edges,
                    indices=edge_perm[s],
                    delay=config.hogwild_delay
                    if epoch_idx == 0 and rank > 0 else 0,
                ) for rank, s in enumerate(
                    split_almost_equally(edge_perm.size(0),
                                         num_parts=num_workers))
            ])
            all_stats = get_async_result(future_all_stats, pool)
            stats = Stats.sum(all_stats).average()
            compute_time = time.time() - tic

            bucket_logger.info(
                f"bucket {total_buckets - remaining} / {total_buckets} : "
                f"Processed {num_edges} edges in {compute_time:.2f} s "
                f"( {num_edges / compute_time / 1e6:.2g} M/sec ); "
                f"io: {io_time:.2f} s ( {io_bytes / io_time / 1e6:.2f} MB/sec )"
            )
            bucket_logger.info(f"{stats}")

            # HOGWILD eval after training
            eval_stats_after: Optional[Stats] = None
            if num_eval_edges > 0:
                bucket_logger.debug(
                    "Waiting for workers to perform evaluation")
                future_all_eval_stats_after = pool.map_async(
                    call, [
                        partial(
                            process_in_batches,
                            batch_size=eval_batch_size,
                            model=model,
                            batch_processor=evaluator,
                            edges=edges,
                            indices=eval_edge_perm[s],
                        ) for s in split_almost_equally(eval_edge_perm.size(0),
                                                        num_parts=num_workers)
                    ])
                all_eval_stats_after = \
                    get_async_result(future_all_eval_stats_after, pool)
                eval_stats_after = Stats.sum(all_eval_stats_after).average()
                bucket_logger.info(f"Stats after training: {eval_stats_after}")

            # Add train/eval metrics to queue
            stats_dict = {
                "index": current_index,
                "stats": stats.to_dict(),
            }
            if eval_stats_before is not None:
                stats_dict["eval_stats_before"] = eval_stats_before.to_dict()
            if eval_stats_after is not None:
                stats_dict["eval_stats_after"] = eval_stats_after.to_dict()
            checkpoint_manager.append_stats(stats_dict)
            yield current_index, eval_stats_before, stats, eval_stats_after

        swap_partitioned_embeddings(cur_b, None)

        # Distributed Processing: all machines can leave the barrier now.
        sync.barrier()

        # Preserving a checkpoint requires two steps:
        # - create a snapshot (w/ symlinks) after it's first written;
        # - don't delete it once the following one is written.
        # These two happen in two successive iterations of the main loop: the
        # one just before and the one just after the epoch boundary.
        preserve_old_checkpoint = should_preserve_old_checkpoint(
            iteration_manager, config.checkpoint_preservation_interval)
        preserve_new_checkpoint = should_preserve_old_checkpoint(
            iteration_manager + 1, config.checkpoint_preservation_interval)

        # Write metadata: for multiple machines, write from rank-0
        logger.info(
            f"Finished epoch {epoch_idx + 1} / {iteration_manager.num_epochs}, "
            f"edge path {edge_path_idx + 1} / {iteration_manager.num_edge_paths}, "
            f"edge chunk {edge_chunk_idx + 1} / {iteration_manager.num_edge_chunks}"
        )
        if rank == 0:
            for entity, econfig in config.entities.items():
                if econfig.num_partitions == 1:
                    embs = model.get_embeddings(entity, Side.LHS)
                    optimizer = trainer.entity_optimizers[(entity,
                                                           Partition(0))]

                    checkpoint_manager.write(
                        entity, Partition(0), embs.detach(),
                        OptimizerStateDict(optimizer.state_dict()))

            sanitized_state_dict: ModuleStateDict = {}
            for k, v in ModuleStateDict(model.state_dict()).items():
                if k.startswith('lhs_embs') or k.startswith('rhs_embs'):
                    # skipping state that's an entity embedding
                    continue
                sanitized_state_dict[k] = v

            logger.info("Writing the metadata")
            checkpoint_manager.write_model(
                sanitized_state_dict,
                OptimizerStateDict(trainer.global_optimizer.state_dict()),
            )

        logger.info("Writing the checkpoint")
        checkpoint_manager.write_new_version(config)

        dist_logger.info(
            "Waiting for other workers to write their parts of the checkpoint")
        sync.barrier()
        dist_logger.info("All parts of the checkpoint have been written")

        logger.info("Switching to the new checkpoint version")
        checkpoint_manager.switch_to_new_version()

        dist_logger.info(
            "Waiting for other workers to switch to the new checkpoint version"
        )
        sync.barrier()
        dist_logger.info(
            "All workers have switched to the new checkpoint version")

        # After all the machines have finished committing
        # checkpoints, we either remove the old checkpoints
        # or we preserve it
        if preserve_new_checkpoint:
            # Add 1 so the index is a multiple of the interval, it looks nicer.
            checkpoint_manager.preserve_current_version(config, epoch_idx + 1)
        if not preserve_old_checkpoint:
            checkpoint_manager.remove_old_version(config)

        # now we're sure that all partition files exist,
        # so be strict about loading them
        strict = True

    # quiescence
    pool.close()
    pool.join()

    sync.barrier()

    checkpoint_manager.close()
    if loadpath_manager is not None:
        loadpath_manager.close()

    # FIXME join distributed workers (not really necessary)

    logger.info("Exiting")
Пример #3
0
    def swap_partitioned_embeddings(
        old_b: Optional[Bucket],
        new_b: Optional[Bucket],
    ):
        # 0. given the old and new buckets, construct data structures to keep
        #    track of old and new embedding (entity, part) tuples

        io_bytes = 0
        logger.info(f"Swapping partitioned embeddings {old_b} {new_b}")

        types = ([(e, Side.LHS) for e in lhs_partitioned_types] +
                 [(e, Side.RHS) for e in rhs_partitioned_types])
        old_parts = {(e, old_b.get_partition(side)): side
                     for e, side in types if old_b is not None}
        new_parts = {(e, new_b.get_partition(side)): side
                     for e, side in types if new_b is not None}

        to_checkpoint = set(old_parts) - set(new_parts)
        preserved = set(old_parts) & set(new_parts)

        # 1. checkpoint embeddings that will not be used in the next pair
        #
        if old_b is not None:  # there are previous embeddings to checkpoint
            logger.info("Writing partitioned embeddings")
            for entity, part in to_checkpoint:
                side = old_parts[(entity, part)]
                side_name = side.pick("lhs", "rhs")
                logger.debug(f"Checkpointing ({entity} {part} {side_name})")
                embs = model.get_embeddings(entity, side)
                optim_key = (entity, part)
                optim_state = OptimizerStateDict(
                    trainer.entity_optimizers[optim_key].state_dict())
                io_bytes += embs.numel() * embs.element_size(
                )  # ignore optim state
                checkpoint_manager.write(entity, part, embs.detach(),
                                         optim_state)
                if optim_key in trainer.entity_optimizers:
                    del trainer.entity_optimizers[optim_key]
                # these variables are holding large objects; let them be freed
                del embs
                del optim_state

            bucket_scheduler.release_bucket(old_b)

        # 2. copy old embeddings that will be used in the next pair
        #    into a temporary dictionary
        #
        tmp_emb = {
            x: model.get_embeddings(x[0], old_parts[x])
            for x in preserved
        }

        for entity, _ in types:
            model.clear_embeddings(entity, Side.LHS)
            model.clear_embeddings(entity, Side.RHS)

        if new_b is None:  # there are no new embeddings to load
            return io_bytes

        bucket_logger = BucketLogger(logger, bucket=new_b)

        # 3. load new embeddings into the model/optimizer, either from disk
        #    or the temporary dictionary
        #
        bucket_logger.info("Loading entities")
        for entity, side in types:
            part = new_b.get_partition(side)
            part_key = (entity, part)
            if part_key in tmp_emb:
                bucket_logger.debug(
                    f"Loading ({entity}, {part}) from preserved")
                embs, optim_state = tmp_emb[part_key], None
            else:
                bucket_logger.debug(f"Loading ({entity}, {part})")

                force_dirty = bucket_scheduler.check_and_set_dirty(
                    entity, part)
                embs, optim_state = load_embeddings(entity,
                                                    part,
                                                    strict=strict,
                                                    force_dirty=force_dirty)
                io_bytes += embs.numel() * embs.element_size(
                )  # ignore optim state

            model.set_embeddings(entity, embs, side)
            tmp_emb[part_key] = embs

            optim_key = (entity, part)
            if optim_key not in trainer.entity_optimizers:
                bucket_logger.debug(f"Resetting optimizer {optim_key}")
                optimizer = make_optimizer([embs], True)
                if optim_state is not None:
                    bucket_logger.debug("Setting optim state")
                    optimizer.load_state_dict(optim_state)

                trainer.entity_optimizers[optim_key] = optimizer

        return io_bytes
Пример #4
0
    def train_and_report_stats(
        self
    ) -> Generator[Tuple[int, Optional[Stats], Stats, Optional[Stats]], None,
                   None]:

        holder = self.holder
        config = self.config
        iteration_manager = self.iteration_manager

        total_buckets = holder.nparts_lhs * holder.nparts_rhs

        # yield stats from checkpoint, to reconstruct
        # saved part of the learning curve
        if self.rank == RANK_ZERO:
            for stats_dict in self.checkpoint_manager.maybe_read_stats():
                index: int = stats_dict["index"]
                stats: Stats = Stats.from_dict(stats_dict["stats"])
                eval_stats_before: Optional[Stats] = None
                if "eval_stats_before" in stats_dict:
                    eval_stats_before = Stats.from_dict(
                        stats_dict["eval_stats_before"])
                eval_stats_after: Optional[Stats] = None
                if "eval_stats_after" in stats_dict:
                    eval_stats_after = Stats.from_dict(
                        stats_dict["eval_stats_after"])
                yield (index, eval_stats_before, stats, eval_stats_after)

        for epoch_idx, edge_path_idx, edge_chunk_idx in iteration_manager:
            logger.info(
                f"Starting epoch {epoch_idx + 1} / {iteration_manager.num_epochs}, "
                f"edge path {edge_path_idx + 1} / {iteration_manager.num_edge_paths}, "
                f"edge chunk {edge_chunk_idx + 1} / {iteration_manager.num_edge_chunks}"
            )
            edge_storage = EDGE_STORAGES.make_instance(
                iteration_manager.edge_path)
            logger.info(f"Edge path: {iteration_manager.edge_path}")

            self._barrier()
            dist_logger.info("Lock client new epoch...")
            self.bucket_scheduler.new_pass(
                is_first=iteration_manager.iteration_idx == 0)
            self._barrier()

            remaining = total_buckets
            cur_b: Optional[Bucket] = None
            cur_stats: Optional[BucketStats] = None
            while remaining > 0:
                old_b: Optional[Bucket] = cur_b
                old_stats: Optional[BucketStats] = cur_stats
                io_time = 0.
                io_bytes = 0
                cur_b, remaining = self.bucket_scheduler.acquire_bucket()
                logger.info(f"still in queue: {remaining}")
                if cur_b is None:
                    cur_stats = None
                    if old_b is not None:
                        # if you couldn't get a new pair, release the lock
                        # to prevent a deadlock!
                        tic = time.time()
                        io_bytes += self._swap_partitioned_embeddings(
                            old_b, None, old_stats)
                        io_time += time.time() - tic
                    time.sleep(1)  # don't hammer td
                    continue

                tic = time.time()
                self.cur_b = cur_b
                bucket_logger = BucketLogger(logger, bucket=cur_b)
                self.bucket_logger = bucket_logger

                io_bytes += self._swap_partitioned_embeddings(
                    old_b, cur_b, old_stats)
                self.model.set_all_embeddings(holder, cur_b)

                current_index = \
                    (iteration_manager.iteration_idx + 1) * total_buckets - remaining

                bucket_logger.debug("Loading edges")
                edges = edge_storage.load_chunk_of_edges(
                    cur_b.lhs,
                    cur_b.rhs,
                    edge_chunk_idx,
                    iteration_manager.num_edge_chunks,
                    shared=True)
                num_edges = len(edges)

                # this might be off in the case of tensorlist or extra edge fields
                io_bytes += edges.lhs.tensor.numel(
                ) * edges.lhs.tensor.element_size()
                io_bytes += edges.rhs.tensor.numel(
                ) * edges.rhs.tensor.element_size()
                io_bytes += edges.rel.numel() * edges.rel.element_size()
                io_time += time.time() - tic
                tic = time.time()

                bucket_logger.debug("Shuffling edges")
                # Fix a seed to get the same permutation every time; have it
                # depend on all and only what affects the set of edges.
                g = torch.Generator()
                g.manual_seed(
                    hash(
                        (edge_path_idx, edge_chunk_idx, cur_b.lhs, cur_b.rhs)))

                num_eval_edges = int(num_edges * config.eval_fraction)
                if num_eval_edges > 0:
                    edge_perm = torch.randperm(num_edges, generator=g)
                    eval_edge_perm = edge_perm[-num_eval_edges:]
                    num_edges -= num_eval_edges
                    edge_perm = edge_perm[torch.randperm(num_edges)]
                else:
                    eval_edge_perm = None
                    edge_perm = torch.randperm(num_edges)

                # HOGWILD evaluation before training
                eval_stats_before = self._coordinate_eval(
                    edges, eval_edge_perm)
                if eval_stats_before is not None:
                    bucket_logger.info(
                        f"Stats before training: {eval_stats_before}")

                # HOGWILD training
                bucket_logger.debug("Waiting for workers to perform training")
                stats = self._coordinate_train(edges, edge_perm, epoch_idx)

                # HOGWILD evaluation after training
                eval_stats_after = self._coordinate_eval(edges, eval_edge_perm)
                if eval_stats_after is not None:
                    bucket_logger.info(
                        f"Stats before training: {eval_stats_after}")

                compute_time = time.time() - tic

                bucket_logger.info(
                    f"bucket {total_buckets - remaining} / {total_buckets} : "
                    f"Processed {num_edges} edges in {compute_time:.2f} s "
                    f"( {num_edges / compute_time / 1e6:.2g} M/sec ); "
                    f"io: {io_time:.2f} s ( {io_bytes / io_time / 1e6:.2f} MB/sec )"
                )
                bucket_logger.info(f"{stats}")

                self.model.clear_all_embeddings()

                yield current_index, eval_stats_before, stats, eval_stats_after

                cur_stats = BucketStats(
                    lhs_partition=cur_b.lhs,
                    rhs_partition=cur_b.rhs,
                    index=current_index,
                    train=stats,
                    eval_before=eval_stats_before,
                    eval_after=eval_stats_after,
                )

            # release the final bucket
            self._swap_partitioned_embeddings(cur_b, None, cur_stats)

            # Distributed Processing: all machines can leave the barrier now.
            self._barrier()

            self._maybe_write_checkpoint(epoch_idx, edge_path_idx,
                                         edge_chunk_idx)

            # now we're sure that all partition files exist,
            # so be strict about loading them
            self.strict = True