Пример #1
0
    def _make_datapipe(
        self,
        resource_dps: List[IterDataPipe],
        *,
        config: DatasetConfig,
        decoder: Optional[Callable[[io.IOBase], torch.Tensor]],
    ) -> IterDataPipe[Dict[str, Any]]:
        archive_dp = resource_dps[0]

        splits_dp, joint_categories_dp, images_dp = Demultiplexer(
            archive_dp, 3, self._classify_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE
        )

        splits_dp = Filter(splits_dp, path_comparator("name", f"{config.split}{config.fold}.txt"))
        splits_dp = LineReader(splits_dp, decode=True, return_path=False)
        splits_dp = Shuffler(splits_dp, buffer_size=INFINITE_BUFFER_SIZE)
        splits_dp = hint_sharding(splits_dp)

        joint_categories_dp = CSVParser(joint_categories_dp, delimiter=" ")

        dp = IterKeyZipper(
            splits_dp,
            joint_categories_dp,
            key_fn=getitem(),
            ref_key_fn=getitem(0),
            buffer_size=INFINITE_BUFFER_SIZE,
        )
        dp = IterKeyZipper(
            dp,
            images_dp,
            key_fn=getitem(0),
            ref_key_fn=self._image_key_fn,
            buffer_size=INFINITE_BUFFER_SIZE,
        )
        return Mapper(dp, functools.partial(self._collate_and_decode_sample, decoder=decoder))
Пример #2
0
    def _make_datapipe(
        self,
        resource_dps: List[IterDataPipe],
        *,
        config: DatasetConfig,
    ) -> IterDataPipe[Dict[str, Any]]:
        archive_dp, extra_split_dp = resource_dps

        archive_dp = resource_dps[0]
        split_dp, images_dp, anns_dp = Demultiplexer(
            archive_dp,
            3,
            self._classify_archive,
            buffer_size=INFINITE_BUFFER_SIZE,
            drop_none=True,
        )
        if config.split == "train_noval":
            split_dp = extra_split_dp

        split_dp = Filter(split_dp,
                          path_comparator("name", f"{config.split}.txt"))
        split_dp = LineReader(split_dp, decode=True)
        split_dp = hint_sharding(split_dp)
        split_dp = hint_shuffling(split_dp)

        dp = split_dp
        for level, data_dp in enumerate((images_dp, anns_dp)):
            dp = IterKeyZipper(
                dp,
                data_dp,
                key_fn=getitem(*[0] * level, 1),
                ref_key_fn=path_accessor("stem"),
                buffer_size=INFINITE_BUFFER_SIZE,
            )
        return Mapper(dp, self._prepare_sample)
Пример #3
0
    def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]:
        archive_dp = resource_dps[0]
        images_dp, scenes_dp = Demultiplexer(
            archive_dp,
            2,
            self._classify_archive,
            drop_none=True,
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        images_dp = Filter(images_dp, path_comparator("parent.name", self._split))
        images_dp = hint_shuffling(images_dp)
        images_dp = hint_sharding(images_dp)

        if self._split != "test":
            scenes_dp = Filter(scenes_dp, path_comparator("name", f"CLEVR_{self._split}_scenes.json"))
            scenes_dp = JsonParser(scenes_dp)
            scenes_dp = Mapper(scenes_dp, getitem(1, "scenes"))
            scenes_dp = UnBatcher(scenes_dp)

            dp = IterKeyZipper(
                images_dp,
                scenes_dp,
                key_fn=path_accessor("name"),
                ref_key_fn=getitem("image_filename"),
                buffer_size=INFINITE_BUFFER_SIZE,
            )
        else:
            dp = Mapper(images_dp, self._add_empty_anns)

        return Mapper(dp, self._prepare_sample)
Пример #4
0
    def _make_datapipe(
        self,
        resource_dps: List[IterDataPipe],
        *,
        config: DatasetConfig,
        decoder: Optional[Callable[[io.IOBase], torch.Tensor]],
    ) -> IterDataPipe[Dict[str, Any]]:

        if config.split == "train":
            images_dp, ann_dp = Demultiplexer(resource_dps[0],
                                              2,
                                              self._classify_train_archive,
                                              drop_none=True,
                                              buffer_size=INFINITE_BUFFER_SIZE)
        else:
            images_dp, ann_dp = resource_dps
            images_dp = Filter(images_dp, path_comparator("suffix", ".ppm"))

        # The order of the image files in the the .zip archives perfectly match the order of the entries in
        # the (possibly concatenated) .csv files. So we're able to use Zipper here instead of a IterKeyZipper.
        ann_dp = CSVDictParser(ann_dp, delimiter=";")
        dp = Zipper(images_dp, ann_dp)

        dp = hint_sharding(dp)
        dp = hint_shuffling(dp)

        dp = Mapper(dp, partial(self._collate_and_decode, decoder=decoder))
        return dp
Пример #5
0
    def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]:
        archive_dp = resource_dps[0]
        split_dp, images_dp, anns_dp = Demultiplexer(
            archive_dp,
            3,
            self._classify_archive,
            drop_none=True,
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        split_dp = Filter(split_dp, functools.partial(self._is_in_folder, name=self._split_folder))
        split_dp = Filter(split_dp, path_comparator("name", f"{self._split}.txt"))
        split_dp = LineReader(split_dp, decode=True)
        split_dp = hint_shuffling(split_dp)
        split_dp = hint_sharding(split_dp)

        dp = split_dp
        for level, data_dp in enumerate((images_dp, anns_dp)):
            dp = IterKeyZipper(
                dp,
                data_dp,
                key_fn=getitem(*[0] * level, 1),
                ref_key_fn=path_accessor("stem"),
                buffer_size=INFINITE_BUFFER_SIZE,
            )
        return Mapper(dp, self._prepare_sample)
Пример #6
0
 def _make_datapipe(self, resource_dps: List[IterDataPipe], *,
                    config: DatasetConfig) -> IterDataPipe[Dict[str, Any]]:
     archive_dp = resource_dps[0]
     images_dp, labels_dp = Demultiplexer(
         archive_dp,
         2,
         functools.partial(self._classify_archive, config=config),
         drop_none=True,
         buffer_size=INFINITE_BUFFER_SIZE,
     )
     return super()._make_datapipe([images_dp, labels_dp], config=config)
Пример #7
0
 def _datapipe(
         self,
         resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]:
     archive_dp = resource_dps[0]
     images_dp, labels_dp = Demultiplexer(
         archive_dp,
         2,
         self._classify_archive,
         drop_none=True,
         buffer_size=INFINITE_BUFFER_SIZE,
     )
     return super()._datapipe([images_dp, labels_dp])
Пример #8
0
    def _make_datapipe(
        self,
        resource_dps: List[IterDataPipe],
        *,
        config: DatasetConfig,
        decoder: Optional[Callable[[io.IOBase], torch.Tensor]],
    ) -> IterDataPipe[Dict[str, Any]]:
        images_dp, anns_dp = resource_dps

        images_dp = Filter(images_dp, self._filter_images)

        split_and_classification_dp, segmentations_dp = Demultiplexer(
            anns_dp,
            2,
            self._classify_anns,
            drop_none=True,
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        split_and_classification_dp = Filter(
            split_and_classification_dp,
            path_comparator("name", f"{config.split}.txt"))
        split_and_classification_dp = CSVDictParser(
            split_and_classification_dp,
            fieldnames=("image_id", "label", "species"),
            delimiter=" ")
        split_and_classification_dp = hint_sharding(
            split_and_classification_dp)
        split_and_classification_dp = hint_shuffling(
            split_and_classification_dp)

        segmentations_dp = Filter(segmentations_dp, self._filter_segmentations)

        anns_dp = IterKeyZipper(
            split_and_classification_dp,
            segmentations_dp,
            key_fn=getitem("image_id"),
            ref_key_fn=path_accessor("stem"),
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        dp = IterKeyZipper(
            anns_dp,
            images_dp,
            key_fn=getitem(0, "image_id"),
            ref_key_fn=path_accessor("stem"),
            buffer_size=INFINITE_BUFFER_SIZE,
        )
        return Mapper(
            dp,
            functools.partial(self._collate_and_decode_sample,
                              decoder=decoder))
Пример #9
0
    def _datapipe(
            self,
            resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]:
        images_dp, meta_dp = resource_dps

        if self._annotations is None:
            dp = hint_shuffling(images_dp)
            dp = hint_sharding(dp)
            dp = hint_shuffling(dp)
            return Mapper(dp, self._prepare_image)

        meta_dp = Filter(meta_dp, self._filter_meta_files)
        meta_dp = JsonParser(meta_dp)
        meta_dp = Mapper(meta_dp, getitem(1))
        meta_dp: IterDataPipe[Dict[str, Dict[str,
                                             Any]]] = MappingIterator(meta_dp)
        images_meta_dp, anns_meta_dp = Demultiplexer(
            meta_dp,
            2,
            self._classify_meta,
            drop_none=True,
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        images_meta_dp = Mapper(images_meta_dp, getitem(1))
        images_meta_dp = UnBatcher(images_meta_dp)

        anns_meta_dp = Mapper(anns_meta_dp, getitem(1))
        anns_meta_dp = UnBatcher(anns_meta_dp)
        anns_meta_dp = Grouper(anns_meta_dp,
                               group_key_fn=getitem("image_id"),
                               buffer_size=INFINITE_BUFFER_SIZE)
        anns_meta_dp = hint_shuffling(anns_meta_dp)
        anns_meta_dp = hint_sharding(anns_meta_dp)

        anns_dp = IterKeyZipper(
            anns_meta_dp,
            images_meta_dp,
            key_fn=getitem(0, "image_id"),
            ref_key_fn=getitem("id"),
            buffer_size=INFINITE_BUFFER_SIZE,
        )
        dp = IterKeyZipper(
            anns_dp,
            images_dp,
            key_fn=getitem(1, "file_name"),
            ref_key_fn=path_accessor("name"),
            buffer_size=INFINITE_BUFFER_SIZE,
        )
        return Mapper(dp, self._prepare_sample)
Пример #10
0
    def _datapipe(
            self,
            resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]:
        images_dp, anns_dp = resource_dps

        images_dp = Filter(images_dp, self._filter_images)

        split_and_classification_dp, segmentations_dp = Demultiplexer(
            anns_dp,
            2,
            self._classify_anns,
            drop_none=True,
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        split_and_classification_dp = Filter(
            split_and_classification_dp,
            path_comparator("name", f"{self._split}.txt"))
        split_and_classification_dp = CSVDictParser(
            split_and_classification_dp,
            fieldnames=("image_id", "label", "species"),
            delimiter=" ")
        split_and_classification_dp = hint_shuffling(
            split_and_classification_dp)
        split_and_classification_dp = hint_sharding(
            split_and_classification_dp)

        segmentations_dp = Filter(segmentations_dp, self._filter_segmentations)

        anns_dp = IterKeyZipper(
            split_and_classification_dp,
            segmentations_dp,
            key_fn=getitem("image_id"),
            ref_key_fn=path_accessor("stem"),
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        dp = IterKeyZipper(
            anns_dp,
            images_dp,
            key_fn=getitem(0, "image_id"),
            ref_key_fn=path_accessor("stem"),
            buffer_size=INFINITE_BUFFER_SIZE,
        )
        return Mapper(dp, self._prepare_sample)
Пример #11
0
    def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]:
        if self._split == "train":
            images_dp, ann_dp = Demultiplexer(
                resource_dps[0], 2, self._classify_train_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE
            )
        else:
            images_dp, ann_dp = resource_dps
            images_dp = Filter(images_dp, path_comparator("suffix", ".ppm"))

        # The order of the image files in the .zip archives perfectly match the order of the entries in the
        # (possibly concatenated) .csv files. So we're able to use Zipper here instead of a IterKeyZipper.
        ann_dp = CSVDictParser(ann_dp, delimiter=";")
        dp = Zipper(images_dp, ann_dp)

        dp = hint_shuffling(dp)
        dp = hint_sharding(dp)

        return Mapper(dp, self._prepare_sample)
Пример #12
0
    def _make_datapipe(self, resource_dps: List[IterDataPipe], *,
                       config: DatasetConfig) -> IterDataPipe[Dict[str, Any]]:
        if config.split in {"train", "test"}:
            dp = resource_dps[0]

            # the train archive is a tar of tars
            if config.split == "train":
                dp = TarArchiveReader(dp)

            dp = hint_sharding(dp)
            dp = hint_shuffling(dp)
            dp = Mapper(
                dp, self._prepare_train_data
                if config.split == "train" else self._prepare_test_data)
        else:  # config.split == "val":
            images_dp, devkit_dp = resource_dps

            meta_dp, label_dp = Demultiplexer(devkit_dp,
                                              2,
                                              self._classifiy_devkit,
                                              drop_none=True,
                                              buffer_size=INFINITE_BUFFER_SIZE)

            meta_dp = Mapper(meta_dp, self._extract_categories_and_wnids)
            _, wnids = zip(*next(iter(meta_dp)))

            label_dp = LineReader(label_dp, decode=True, return_path=False)
            label_dp = Mapper(
                label_dp,
                functools.partial(self._imagenet_label_to_wnid, wnids=wnids))
            label_dp: IterDataPipe[Tuple[int, str]] = Enumerator(label_dp, 1)
            label_dp = hint_sharding(label_dp)
            label_dp = hint_shuffling(label_dp)

            dp = IterKeyZipper(
                label_dp,
                images_dp,
                key_fn=getitem(0),
                ref_key_fn=self._val_test_image_key,
                buffer_size=INFINITE_BUFFER_SIZE,
            )
            dp = Mapper(dp, self._prepare_val_data)

        return Mapper(dp, self._prepare_sample)
Пример #13
0
    def _make_datapipe(
        self,
        resource_dps: List[IterDataPipe],
        *,
        config: DatasetConfig,
    ) -> IterDataPipe[Dict[str, Any]]:
        archive_dp = resource_dps[0]
        split_dp, images_dp, anns_dp = Demultiplexer(
            archive_dp,
            3,
            functools.partial(self._classify_archive, config=config),
            drop_none=True,
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        split_dp = Filter(
            split_dp,
            functools.partial(self._is_in_folder,
                              name=self._SPLIT_FOLDER[config.task]))
        split_dp = Filter(split_dp,
                          path_comparator("name", f"{config.split}.txt"))
        split_dp = LineReader(split_dp, decode=True)
        split_dp = hint_sharding(split_dp)
        split_dp = hint_shuffling(split_dp)

        dp = split_dp
        for level, data_dp in enumerate((images_dp, anns_dp)):
            dp = IterKeyZipper(
                dp,
                data_dp,
                key_fn=getitem(*[0] * level, 1),
                ref_key_fn=path_accessor("stem"),
                buffer_size=INFINITE_BUFFER_SIZE,
            )
        return Mapper(
            dp,
            functools.partial(
                self._prepare_sample,
                prepare_ann_fn=self._prepare_detection_ann if config.task
                == "detection" else self._prepare_segmentation_ann,
            ),
        )
Пример #14
0
    def _make_datapipe(
        self,
        resource_dps: List[IterDataPipe],
        *,
        config: DatasetConfig,
        decoder: Optional[Callable[[io.IOBase], torch.Tensor]],
    ) -> IterDataPipe[Dict[str, Any]]:
        archive_dp, extra_split_dp = resource_dps

        archive_dp = resource_dps[0]
        split_dp, images_dp, anns_dp = Demultiplexer(
            archive_dp,
            3,
            self._classify_archive,
            buffer_size=INFINITE_BUFFER_SIZE,
            drop_none=True,
        )

        if config.split == "train_noval":
            split_dp = extra_split_dp
        split_dp = Filter(split_dp, path_comparator("stem", config.split))
        split_dp = LineReader(split_dp, decode=True)
        split_dp = hint_sharding(split_dp)
        split_dp = hint_shuffling(split_dp)

        dp = split_dp
        for level, data_dp in enumerate((images_dp, anns_dp)):
            dp = IterKeyZipper(
                dp,
                data_dp,
                key_fn=getitem(*[0] * level, 1),
                ref_key_fn=path_accessor("stem"),
                buffer_size=INFINITE_BUFFER_SIZE,
            )
        return Mapper(
            dp,
            functools.partial(self._collate_and_decode_sample,
                              config=config,
                              decoder=decoder))
Пример #15
0
    def _make_datapipe(
        self,
        resource_dps: List[IterDataPipe],
        *,
        config: DatasetConfig,
        decoder: Optional[Callable[[io.IOBase], torch.Tensor]],
    ) -> IterDataPipe[Dict[str, Any]]:
        archive_dp = resource_dps[0]
        images_dp, scenes_dp = Demultiplexer(
            archive_dp,
            2,
            self._classify_archive,
            drop_none=True,
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        images_dp = Filter(images_dp, path_comparator("parent.name", config.split))
        images_dp = hint_sharding(images_dp)
        images_dp = hint_shuffling(images_dp)

        if config.split != "test":
            scenes_dp = Filter(scenes_dp, path_comparator("name", f"CLEVR_{config.split}_scenes.json"))
            scenes_dp = JsonParser(scenes_dp)
            scenes_dp = Mapper(scenes_dp, getitem(1, "scenes"))
            scenes_dp = UnBatcher(scenes_dp)

            dp = IterKeyZipper(
                images_dp,
                scenes_dp,
                key_fn=path_accessor("name"),
                ref_key_fn=getitem("image_filename"),
                buffer_size=INFINITE_BUFFER_SIZE,
            )
        else:
            dp = Mapper(images_dp, self._add_empty_anns)

        return Mapper(dp, functools.partial(self._collate_and_decode_sample, decoder=decoder))
Пример #16
0
    def _datapipe(
            self,
            resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]:
        archive_dp = resource_dps[0]
        images_dp, split_dp = Demultiplexer(archive_dp,
                                            2,
                                            self._classify_archive,
                                            drop_none=True,
                                            buffer_size=INFINITE_BUFFER_SIZE)
        split_dp = Filter(split_dp,
                          path_comparator("name", f"{self._split}.txt"))
        split_dp = LineReader(split_dp, decode=True, return_path=False)
        split_dp = hint_sharding(split_dp)
        split_dp = hint_shuffling(split_dp)

        dp = IterKeyZipper(
            split_dp,
            images_dp,
            key_fn=getitem(),
            ref_key_fn=self._image_key,
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        return Mapper(dp, self._prepare_sample)
Пример #17
0
    def _make_datapipe(
        self,
        resource_dps: List[IterDataPipe],
        *,
        config: DatasetConfig,
        decoder: Optional[Callable[[io.IOBase], torch.Tensor]],
    ) -> IterDataPipe[Dict[str, Any]]:
        if config.year == "2011":
            archive_dp, segmentations_dp = resource_dps
            images_dp, split_dp, image_files_dp, bounding_boxes_dp = Demultiplexer(
                archive_dp,
                4,
                self._2011_classify_archive,
                drop_none=True,
                buffer_size=INFINITE_BUFFER_SIZE)

            image_files_dp = CSVParser(image_files_dp, dialect="cub200")
            image_files_map = dict(
                (image_id, rel_posix_path.rsplit("/", maxsplit=1)[1])
                for image_id, rel_posix_path in image_files_dp)

            split_dp = CSVParser(split_dp, dialect="cub200")
            split_dp = Filter(
                split_dp,
                functools.partial(self._2011_filter_split, split=config.split))
            split_dp = Mapper(split_dp, getitem(0))
            split_dp = Mapper(split_dp, image_files_map.get)

            bounding_boxes_dp = CSVParser(bounding_boxes_dp, dialect="cub200")
            bounding_boxes_dp = Mapper(bounding_boxes_dp,
                                       image_files_map.get,
                                       input_col=0)

            anns_dp = IterKeyZipper(
                bounding_boxes_dp,
                segmentations_dp,
                key_fn=getitem(0),
                ref_key_fn=self._2011_segmentation_key,
                keep_key=True,
                buffer_size=INFINITE_BUFFER_SIZE,
            )
        else:  # config.year == "2010"
            split_dp, images_dp, anns_dp = resource_dps

            split_dp = Filter(split_dp,
                              path_comparator("name", f"{config.split}.txt"))
            split_dp = LineReader(split_dp, decode=True, return_path=False)
            split_dp = Mapper(split_dp, self._2010_split_key)

            anns_dp = Mapper(anns_dp, self._2010_anns_key)

        split_dp = hint_sharding(split_dp)
        split_dp = hint_shuffling(split_dp)

        dp = IterKeyZipper(
            split_dp,
            images_dp,
            getitem(),
            path_accessor("name"),
            buffer_size=INFINITE_BUFFER_SIZE,
        )
        dp = IterKeyZipper(
            dp,
            anns_dp,
            getitem(0),
            buffer_size=INFINITE_BUFFER_SIZE,
        )
        return Mapper(
            dp,
            functools.partial(self._collate_and_decode_sample,
                              year=config.year,
                              decoder=decoder))
Пример #18
0
    def _make_datapipe(
        self,
        resource_dps: List[IterDataPipe],
        *,
        config: DatasetConfig,
        decoder: Optional[Callable[[io.IOBase], torch.Tensor]],
    ) -> IterDataPipe[Dict[str, Any]]:
        images_dp, meta_dp = resource_dps

        if config.annotations is None:
            dp = hint_sharding(images_dp)
            dp = hint_shuffling(dp)
            return Mapper(
                dp,
                functools.partial(self._collate_and_decode_image,
                                  decoder=decoder))

        meta_dp = Filter(
            meta_dp,
            functools.partial(
                self._filter_meta_files,
                split=config.split,
                year=config.year,
                annotations=config.annotations,
            ),
        )
        meta_dp = JsonParser(meta_dp)
        meta_dp = Mapper(meta_dp, getitem(1))
        meta_dp: IterDataPipe[Dict[str, Dict[str,
                                             Any]]] = MappingIterator(meta_dp)
        images_meta_dp, anns_meta_dp = Demultiplexer(
            meta_dp,
            2,
            self._classify_meta,
            drop_none=True,
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        images_meta_dp = Mapper(images_meta_dp, getitem(1))
        images_meta_dp = UnBatcher(images_meta_dp)

        anns_meta_dp = Mapper(anns_meta_dp, getitem(1))
        anns_meta_dp = UnBatcher(anns_meta_dp)
        anns_meta_dp = Grouper(anns_meta_dp,
                               group_key_fn=getitem("image_id"),
                               buffer_size=INFINITE_BUFFER_SIZE)
        anns_meta_dp = hint_sharding(anns_meta_dp)
        anns_meta_dp = hint_shuffling(anns_meta_dp)

        anns_dp = IterKeyZipper(
            anns_meta_dp,
            images_meta_dp,
            key_fn=getitem(0, "image_id"),
            ref_key_fn=getitem("id"),
            buffer_size=INFINITE_BUFFER_SIZE,
        )

        dp = IterKeyZipper(
            anns_dp,
            images_dp,
            key_fn=getitem(1, "file_name"),
            ref_key_fn=path_accessor("name"),
            buffer_size=INFINITE_BUFFER_SIZE,
        )
        return Mapper(
            dp,
            functools.partial(self._collate_and_decode_sample,
                              annotations=config.annotations,
                              decoder=decoder))
Пример #19
0
    def _datapipe(
            self,
            resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]:
        prepare_ann_fn: Callable
        if self._year == "2011":
            archive_dp, segmentations_dp = resource_dps
            images_dp, split_dp, image_files_dp, bounding_boxes_dp = Demultiplexer(
                archive_dp,
                4,
                self._2011_classify_archive,
                drop_none=True,
                buffer_size=INFINITE_BUFFER_SIZE)

            image_files_dp = CSVParser(image_files_dp, dialect="cub200")
            image_files_map = dict(
                (image_id, rel_posix_path.rsplit("/", maxsplit=1)[1])
                for image_id, rel_posix_path in image_files_dp)

            split_dp = CSVParser(split_dp, dialect="cub200")
            split_dp = Filter(split_dp, self._2011_filter_split)
            split_dp = Mapper(split_dp, getitem(0))
            split_dp = Mapper(split_dp, image_files_map.get)

            bounding_boxes_dp = CSVParser(bounding_boxes_dp, dialect="cub200")
            bounding_boxes_dp = Mapper(bounding_boxes_dp,
                                       image_files_map.get,
                                       input_col=0)

            anns_dp = IterKeyZipper(
                bounding_boxes_dp,
                segmentations_dp,
                key_fn=getitem(0),
                ref_key_fn=self._2011_segmentation_key,
                keep_key=True,
                buffer_size=INFINITE_BUFFER_SIZE,
            )

            prepare_ann_fn = self._2011_prepare_ann
        else:  # self._year == "2010"
            split_dp, images_dp, anns_dp = resource_dps

            split_dp = Filter(split_dp,
                              path_comparator("name", f"{self._split}.txt"))
            split_dp = LineReader(split_dp, decode=True, return_path=False)
            split_dp = Mapper(split_dp, self._2010_split_key)

            anns_dp = Mapper(anns_dp, self._2010_anns_key)

            prepare_ann_fn = self._2010_prepare_ann

        split_dp = hint_shuffling(split_dp)
        split_dp = hint_sharding(split_dp)

        dp = IterKeyZipper(
            split_dp,
            images_dp,
            getitem(),
            path_accessor("name"),
            buffer_size=INFINITE_BUFFER_SIZE,
        )
        dp = IterKeyZipper(
            dp,
            anns_dp,
            getitem(0),
            buffer_size=INFINITE_BUFFER_SIZE,
        )
        return Mapper(
            dp,
            functools.partial(self._prepare_sample,
                              prepare_ann_fn=prepare_ann_fn))