transform=train_transformer), batch_size=batch_size, shuffle=True, ) test_loader = DataLoader( datasets.CIFAR10(data_dir, train=False, transform=test_transformer), batch_size=batch_size, shuffle=True, ) logger = set_logger("classification_cifar10_cnn") # FusionClassifier model = FusionClassifier(estimator=LeNet5, n_estimators=n_estimators, cuda=True) # Set the optimizer model.set_optimizer("Adam", lr=lr, weight_decay=weight_decay) # Training tic = time.time() model.fit(train_loader, epochs=epochs) toc = time.time() training_time = toc - tic # Evaluating tic = time.time() testing_acc = model.evaluate(test_loader) toc = time.time()
(0.2023, 0.1994, 0.2010))]) train_loader = DataLoader(datasets.CIFAR10( data_dir, train=True, download=True, transform=transformer), batch_size=batch_size, shuffle=True) test_loader = DataLoader(datasets.CIFAR10( data_dir, train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])), batch_size=batch_size, shuffle=True) # FusionClassifier model = FusionClassifier(estimator=LeNet5, n_estimators=n_estimators, output_dim=output_dim, lr=lr, weight_decay=weight_decay, epochs=epochs) tic = time.time() model.fit(train_loader) toc = time.time() training_time = toc - tic tic = time.time() testing_acc = model.predict(test_loader) toc = time.time() evaluating_time = toc - tic records.append(('FusionClassifier', training_time,