Пример #1
0
def main():
    # Define some hyper-parameters for training
    emb_dim = 100
    lr = 0.001  #0.0004
    margin = 1
    n_epochs = 30  #10
    batch_size = 5000  #10000 #32768

    # Load dataset
    #kg_train, kg_val, kg_test = load_fb15k()
    #kinship_df = pd.read_csv('data/kinship.txt', delimiter='\t', header=None, names=['from', 'rel', 'to'])
    #kinship_kg = KnowledgeGraph(df=kinship_df)
    #kg_train, kg_test = kinship_kg.split_kg(share=0.9)

    data_name = 'FB15k-237'
    df1 = pd.read_csv('../data/%s/divided/train1.csv' % data_name,
                      delimiter='\t')
    #df1 = df1.rename(columns={'head': 'from', 'rel': 'rel', 'tail': 'to'})
    kg = KnowledgeGraph(df1)

    #kg_train, kg_test = kg.split_kg(share=0.85)
    kg_train, kg_test = kg.split_kg(size=(0.85, ))

    print('n_ent: ', kg_train.n_ent)
    print('n_rel: ', kg_train.n_rel)
    print('n_facts: train: %s, test: %s' % (kg_train.n_facts, kg_test.n_facts))
    #print('n_facts: total: %s, train: %s, test: %s' %(kinship_kg.n_facts, kg_train.n_facts, kg_test.n_facts))

    # Define the model and criterion
    #model = RESCALModel(emb_dim, kg_train.n_ent, kg_train.n_rel)
    #print('RESCALModel')
    model = Rescal(kg_train.n_ent, kg_train.n_rel, emb_dim)
    criterion = MarginLoss(margin)
    optimizer = Adam(model.parameters(), lr=lr, weight_decay=1e-5)

    trainer = Trainer(model,
                      criterion,
                      kg_train,
                      n_epochs,
                      batch_size,
                      optimizer=optimizer,
                      sampling_type='unif',
                      use_cuda=None)

    for _ in range(1):
        trainer.run()

        evaluator = LinkPredictionEvaluator(model, kg_test)
        evaluator.evaluate(200, 10)
        evaluator.print_results(k=[1, 3, 10])
Пример #2
0
def main_quantified_TransE():
    # Define some hyper-parameters for training
    emb_dim = 100
    lr = 0.0004
    margin = 0.5
    n_epochs = 1000
    batch_size = 2097152

    # Load dataset
    data_path = "/tmp/pycharm_project_583/data/uncmtrd/agg6_202005_ALL_tv.csv"

    kg_train, kg_val, kg_test = load_custom_qr(data_path=data_path)

    model = TransEQuantifiedRelations(
        emb_dim, kg_train.n_ent, kg_train.n_rel, dissimilarity_type="L2"
    )

    print_model(model) # check we only have two embedding layers - one for entity, the other for relations

    dataset_name = data_path.split('/')[-1].replace('.csv', '')
    curr_time = datetime.now().strftime('%Y%m%d%H%M%S')
    model_prefix = os.path.join('./pretrained', f'{dataset_name}_emb{emb_dim}_lr{lr}_mgn{margin}_epch{n_epochs}_bsize{batch_size}_t{curr_time}')

    criterion = MarginLoss(margin)
    optimizer = Adam(model.parameters(), lr=lr, weight_decay=1e-5)

    trainer = Trainer(
        model,
        criterion,
        kg_train,
        n_epochs,
        batch_size,
        optimizer=optimizer,
        sampling_type="bern",
        use_cuda=None,
    )

    trainer.run(kg_test=kg_test, model_prefix=model_prefix)
Пример #3
0
def main():
    # Define some hyper-parameters for training
    emb_dim = 100
    lr = 0.0004
    margin = 0.5
    n_epochs = 1000
    batch_size = 32768

    # Load dataset
    kg_train, kg_val, kg_test = load_fb15k()

    print(kg_train)

    # Define the model and criterion
    model = TransEModel(emb_dim,
                        kg_train.n_ent,
                        kg_train.n_rel,
                        dissimilarity_type="L2")
    criterion = MarginLoss(margin)
    optimizer = Adam(model.parameters(), lr=lr, weight_decay=1e-5)

    trainer = Trainer(
        model,
        criterion,
        kg_train,
        n_epochs,
        batch_size,
        optimizer=optimizer,
        sampling_type="bern",
        use_cuda=None,
    )

    trainer.run()

    evaluator = LinkPredictionEvaluator(model, kg_test)
    evaluator.evaluate(200, 10)
    evaluator.print_results()
def main():
    # Define some hyper-parameters for training
    global optimizer
    benchmarks = 'GeoDBpedia21'
    model_name = 'TransR_GDR'
    opt_method = 'Adam'  # "Adagrad" "Adadelta" "Adam" "SGD"
    GDR = True  # 是否引入坐标信息

    emb_dim = 100  # TransE model
    ent_dim = emb_dim
    rel_dim = emb_dim
    lr = 0.001
    margin = 0.5

    n_epochs = 20000
    train_b_size = 256  # 训练时batch size
    eval_b_size = 64  # 测评valid test 时batch size

    #     save_time_freq = 5
    #     require_improvement = save_time_freq*5

    validation_freq = 10  # 多少轮进行在验证集进行一次测试 同时保存最佳模型
    require_improvement = validation_freq * 3  # 验证集top_k超过多少epoch没下降,结束训练
    model_save_path = './checkpoint/' + benchmarks + '_' + model_name + '_' + opt_method + '.ckpt'  # 保存最佳hits k (ent)模型
    device = 'cuda:0' if cuda.is_available() else 'cpu'

    # Load dataset
    module = getattr(import_module('torchkge.models'), model_name + 'Model')
    load_data = getattr(import_module('torchkge.utils.datasets'), 'load_' + benchmarks)

    print('Loading data...')
    kg_train, kg_val, kg_test = load_data(GDR=GDR)
    print(f'Train set: {kg_train.n_ent} entities, {kg_train.n_rel} relations, {kg_train.n_facts} triplets.')
    print(f'Valid set: {kg_val.n_facts} triplets, Test set: {kg_test.n_facts} triplets.')

    # Define the model and criterion
    print('Loading model...')
    if 'TransE' in model_name:
        model = module(emb_dim, kg_train.n_ent, kg_train.n_rel, dissimilarity_type='L2')
    else:
        model = module(ent_dim, rel_dim, kg_train.n_ent, kg_train.n_rel)
    criterion = MarginLoss(margin)

    # Move everything to CUDA if available
    if device == 'cuda:0':
        cuda.empty_cache()
        model.to(device)
        criterion.to(device)
        dataloader = DataLoader(kg_train, batch_size=train_b_size, use_cuda='all')
    else:
        dataloader = DataLoader(kg_train, batch_size=train_b_size, use_cuda=None)

    # Define the torch optimizer to be used
    optimizer = optimizer(model, opt_method=opt_method, lr=lr)
    # optimizer = Adam(model.parameters(), lr=lr, weight_decay=1e-5)
    sampler = BernoulliNegativeSampler(kg_train)

    start_epoch = 1
    best_score = float('-inf')
    if os.path.exists(model_save_path):  # 存在则加载模型 并继续训练
        start_epoch, best_score = load_ckpt(model_save_path, model, optimizer)
        print(f'loading ckpt sucessful, start on epoch {start_epoch}...')
    print(model)
    print('lr: {}, margin: {}, dim {}, total epoch: {}, device: {}, batch size: {}, optim: {}, GDR: {}' \
          .format(lr, margin, emb_dim, n_epochs, device, train_b_size, opt_method, GDR))

    print('Training...')
    last_improve = start_epoch  # 记录上次验证集loss下降的epoch数
    start = time.time()
    #     last_improve = start
    #     save_time = start
    for epoch in range(start_epoch, n_epochs + 1):
        #         model.normalize_parameters()

        running_loss = 0.0
        model.train()
        for i, batch in enumerate(dataloader):
            if GDR:
                h, t, r, point = batch[0], batch[1], batch[2], batch[3]
                n_h, n_t = sampler.corrupt_batch(h, t, r)  # 1:1 negative sampling
                n_point = id2point(n_h, n_t, kg_train.id2point)
                optimizer.zero_grad()

                # forward + backward + optimize
                pos, neg = model(h, t, n_h, n_t, r)
                loss = criterion(pos, neg, point, n_point)
            else:
                h, t, r = batch[0], batch[1], batch[2]
                n_h, n_t = sampler.corrupt_batch(h, t, r)
                optimizer.zero_grad()
                pos, neg = model(h, t, n_h, n_t, r)
                loss = criterion(pos, neg)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
        model.normalize_parameters()
        #         print('\rEpoch [{:>4}/{:>4}] | mean loss: {:>8.3f}, time: {}'.format(epoch, n_epochs, running_loss / len(dataloader), time_since(start)), end='', flush=True)

        #         # test
        if epoch % validation_freq == 0:
            create_dir_not_exists('./checkpoint')
            model.eval()
            evaluator = LinkPredictionEvaluator(model, kg_val)
            evaluator.evaluate(b_size=eval_b_size, verbose=False)
            _, hit_at_k = evaluator.hit_at_k(10)  # val filter hit_k
            print('Epoch [{:>5}/{:>5}] '.format(epoch, n_epochs), end='')
            if hit_at_k > best_score:
                save_ckpt(model, optimizer, epoch, best_score, model_save_path)
                best_score = hit_at_k
                improve = '*'  # 在有提升的结果后面加上*标注
                last_improve = epoch  # 验证集hit_k增大即认为有提升
            else:
                improve = ''
            msg = '| Train loss: {:>8.3f}, Val Hit@10: {:>5.2%}, Time {} {}'
            print(msg.format(running_loss / len(dataloader), hit_at_k, time_since(start), improve))
        #         model.normalize_parameters()
        if epoch - last_improve > require_improvement:
            # 验证集top_k超过一定epoch没增加,结束训练
            print("\nNo optimization for a long time, auto-stopping...")
            break

    #         # test
    #         if (time.time() - save_time)/60 > save_time_freq:
    #             create_dir_not_exists('./checkpoint')
    #             model.eval()
    #             evaluator = LinkPredictionEvaluator(model, kg_val)
    #             evaluator.evaluate(b_size=eval_b_size, verbose=False)
    #             _, hit_at_k = evaluator.hit_at_k(10)  # val filter hit_k
    #             if hit_at_k > best_score:
    #                 save_ckpt(model, optimizer, epoch, best_score, model_save_path)
    #                 best_score = hit_at_k
    #                 improve = '*'  # 在有提升的结果后面加上*标注
    #                 last_improve = time.time()  # 验证集hit_k增大即认为有提升
    #             else:
    #                 improve = ''
    #             save_time = time.time()
    #             msg = ', Val Hit@10: {:>5.2%} {}'
    #             print(msg.format(hit_at_k, improve))
    #         model.normalize_parameters()
    #         if (time.time() - last_improve)/60 > require_improvement:
    #             # 验证集top_k超过一定epoch没增加,结束训练
    #             print("\nNo optimization for a long time, auto-stopping...")
    #             break

    print('\nTraining done, start evaluate on test data...')
    print('model name: {}, lr: {}, dim {}, device: {}, eval batch size: {}, optim: {}, GDR: {}' \
          .format(model_name, lr, emb_dim, device, eval_b_size, opt_method, GDR))
    # Testing the best checkpoint on test dataset
    load_ckpt(model_save_path, model, optimizer)
    model.eval()
    lp_evaluator = LinkPredictionEvaluator(model, kg_test)
    lp_evaluator.evaluate(eval_b_size, verbose=False)
    lp_evaluator.print_results()
    rp_evaluator = RelationPredictionEvaluator(model, kg_test)
    rp_evaluator.evaluate(eval_b_size, verbose=False)
    rp_evaluator.print_results()
    print(f'Total time cost: {time_since(start)}')
Пример #5
0
# Define some hyper-parameters for training
emb_dim = 250
lr = 0.0004
n_epochs = 1000
b_size = 32768
margin = 0.5

# In[18]:

# Define the model and criterion
model = TransEModel(emb_dim,
                    kg_train.n_ent,
                    kg_train.n_rel,
                    dissimilarity_type='L2')
criterion = MarginLoss(margin)

# In[43]:

# Move everything to CUDA if available
if cuda.is_available():
    cuda.empty_cache()
    model.cuda()
    criterion.cuda()

# In[20]:

# Define the torch optimizer to be used
optimizer = Adam(model.parameters(), lr=lr, weight_decay=1e-5)

sampler = BernoulliNegativeSampler(kg_train)
Пример #6
0
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if device.type == 'cuda':
        print('gpu is available')
        torch.cuda.empty_cache()

    if torch.cuda.device_count() > 1:
        print('multiple gpus are available')
        if args.gpu is not None:
            model = DataParallel(model, device_ids=args.gpu)
        else:
            model = DataParallel(model)

    checkpoint_manager = CheckpointManager(restore_dir)
    ckpt = checkpoint_manager.load_checkpoint(f'best_{args.model}.tar')
    model.load_state_dict(ckpt['model_state_dict'])
    criterion = MarginLoss(margin)

    model.to(device)
    criterion.to(device)

    sampler = BernoulliNegativeSampler(kg_test)
    test_dl = DataLoader(kg_test, batch_size=args.batch_size)

    model.eval()
    test_loss = 0
    for step, batch in tqdm(enumerate(test_dl),
                            desc='steps',
                            total=len(test_dl)):
        h, t, r = map(lambda elm: elm.to(device), batch)
        n_h, n_t = sampler.corrupt_batch(h, t, r)
        with torch.no_grad():
Пример #7
0
    assert args.model in ['TransE', 'TransR', 'DistMult'
                          ], "Invalid Knowledge Graph Embedding Model"
    if args.model == 'TransE':
        model = torchkge.models.TransEModel(args.ent_dim,
                                            kg_train.n_ent,
                                            kg_train.n_rel,
                                            dissimilarity_type='L2')
    elif args.model == 'DistMult':
        model = torchkge.models.DistMultModel(args.ent_dim, kg_train.n_ent,
                                              kg_train.n_rel)
    elif args.model == 'TransR':
        model = torchkge.models.TransRModel(args.ent_dim, args.rel_dim,
                                            kg_train.n_ent, kg_train.n_rel)

    criterion = MarginLoss(args.margin)

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        model.cuda()
        criterion.cuda()

    writer = SummaryWriter(save_dir / f'runs_{args.model}')
    checkpoint_manager = CheckpointManager(save_dir)
    summary_manager = SummaryManager(save_dir)
    summary_manager.update(experiment_summary)

    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.learning_rate,
                                 weight_decay=1e-5)
    sampler = BernoulliNegativeSampler(kg_train)