Пример #1
0
    def g_prod(self, t, y_aug, noise):
        sde, params, n_tensors = self._base_sde, self.params, len(y_aug) // 2
        y, adj_y = y_aug[:n_tensors], y_aug[n_tensors:2 * n_tensors]

        with torch.enable_grad():
            y = tuple(y_.detach().requires_grad_(True) for y_ in y)
            adj_y = tuple(adj_y_.detach() for adj_y_ in adj_y)

            g_eval = tuple(-g_ for g_ in sde.g(-t, y))
            g_eval = misc.make_seq_requires_grad_y(g_eval, y)
            vjp_y_and_params = torch.autograd.grad(
                outputs=g_eval,
                inputs=y + params,
                grad_outputs=tuple(-noise_ * adj_y_
                                   for noise_, adj_y_ in zip(noise, adj_y)),
                allow_unused=True,
            )
            vjp_y = vjp_y_and_params[:n_tensors]
            vjp_y = misc.convert_none_to_zeros(vjp_y, y)

            vjp_params = vjp_y_and_params[n_tensors:]
            vjp_params = misc.flatten_convert_none_to_zeros(vjp_params, params)
            g_prod_eval = misc.seq_mul(g_eval, noise)

        return (*g_prod_eval, *vjp_y, vjp_params)
Пример #2
0
 def gdg_prod(self, t, y, v):
     with torch.enable_grad():
         y = tuple(y_.detach().requires_grad_(True) if not y_.requires_grad else y_ for y_ in y)
         val = self._base_sde.g(t, y)
         val = misc.make_seq_requires_grad(val)
         vjp_val = torch.autograd.grad(
             outputs=val, inputs=y, grad_outputs=misc.seq_mul(val, v), create_graph=True, allow_unused=True)
         vjp_val = misc.convert_none_to_zeros(vjp_val, y)
     return vjp_val
Пример #3
0
    def gdg_prod(self, t, y_aug, noise):
        sde, params, n_tensors = self._base_sde, self.params, len(y_aug) // 3
        y, adj_y, adj_l = y_aug[:n_tensors], y_aug[
            n_tensors:2 * n_tensors], y_aug[2 * n_tensors:3 * n_tensors]
        vjp_l = tuple(torch.zeros_like(adj_l_) for adj_l_ in adj_l)

        with torch.enable_grad():
            y = tuple(y_.detach().requires_grad_(True) for y_ in y)
            adj_y = tuple(adj_y_.detach().requires_grad_(True)
                          for adj_y_ in adj_y)

            g_eval = sde.g(-t, y)
            g_eval = misc.make_seq_requires_grad_y(g_eval, y)

            gdg_times_v = torch.autograd.grad(
                outputs=g_eval,
                inputs=y,
                grad_outputs=misc.seq_mul(g_eval, noise),
                allow_unused=True,
                create_graph=True,
            )
            gdg_times_v = misc.convert_none_to_zeros(gdg_times_v, y)

            dgdy = torch.autograd.grad(
                outputs=g_eval,
                inputs=y,
                grad_outputs=tuple(torch.ones_like(y_) for y_ in y),
                allow_unused=True,
                create_graph=True,
            )
            dgdy = misc.convert_none_to_zeros(dgdy, y)

            prod_partials_adj_y_and_params = torch.autograd.grad(
                outputs=g_eval,
                inputs=y + params,
                grad_outputs=misc.seq_mul(adj_y, noise, dgdy),
                allow_unused=True,
                create_graph=True,
            )
            prod_partials_adj_y = prod_partials_adj_y_and_params[:n_tensors]
            prod_partials_adj_y = misc.convert_none_to_zeros(
                prod_partials_adj_y, y)
            prod_partials_params = prod_partials_adj_y_and_params[n_tensors:]
            prod_partials_params = misc.flatten_convert_none_to_zeros(
                prod_partials_params, params)

            gdg_v = torch.autograd.grad(
                outputs=g_eval,
                inputs=y,
                grad_outputs=tuple(
                    p.detach() for p in misc.seq_mul(adj_y, noise, g_eval)),
                allow_unused=True,
                create_graph=True,
            )
            gdg_v = misc.convert_none_to_zeros(gdg_v, y)
            gdg_v = misc.make_seq_requires_grad_y(gdg_v, y)

            gdg_v = tuple(gdg_v_.sum() for gdg_v_ in gdg_v)
            mixed_partials_adj_y_and_params = torch.autograd.grad(
                outputs=gdg_v,
                inputs=y + params,
                allow_unused=True,
            )
            mixed_partials_adj_y = mixed_partials_adj_y_and_params[:n_tensors]
            mixed_partials_adj_y = misc.convert_none_to_zeros(
                mixed_partials_adj_y, y)
            mixed_partials_params = mixed_partials_adj_y_and_params[n_tensors:]
            mixed_partials_params = misc.flatten_convert_none_to_zeros(
                mixed_partials_params, params)

        return (*gdg_times_v,
                *misc.seq_sub(prod_partials_adj_y, mixed_partials_adj_y),
                *vjp_l, prod_partials_params - mixed_partials_params)
Пример #4
0
 def g_prod(self, t, y, v):
     if self.noise_type == "diagonal":
         return misc.seq_mul(self._base_sde.g(t, y), v)
     elif self.noise_type == "scalar":
         return misc.seq_mul_bc(self._base_sde.g(t, y), v)
     return misc.seq_batch_mvp(ms=self._base_sde.g(t, y), vs=v)