Пример #1
0
    def __init__(self, subtype='shufflenet_v2_x1_0', out_stages=[2,3,4], backbone_path=None):
        super(ShuffleNetV2, self).__init__()
        self.out_stages = out_stages
        self.backbone_path = backbone_path

        if subtype == 'shufflenet_v2_x0_5':
            self.backbone = shufflenet_v2_x0_5(pretrained=not self.backbone_path)
            self.out_channels = [24, 48, 96, 192, 1024]
        elif subtype == 'shufflenet_v2_x1_0':
            self.backbone = shufflenet_v2_x1_0(pretrained=not self.backbone_path)
            self.out_channels = [24, 116, 232, 464, 1024]
        elif subtype == 'shufflenet_v2_x1_5':
            self.backbone = shufflenet_v2_x1_5(pretrained=not self.backbone_path)
            self.out_channels = [24, 176, 352, 704, 1024]
        elif subtype == 'shufflenet_v2_x2_0':
            self.backbone = shufflenet_v2_x2_0(pretrained=not self.backbone_path)
            self.out_channels = [24, 244, 488, 976, 2048]
        else:
            raise NotImplementedError

        self.out_channels = self.out_channels[self.out_stages[0]:self.out_stages[-1] + 1]

        if self.backbone_path:
            self.backbone.load_state_dict(torch.load(self.backbone_path))
        else:
            self.init_weights()
Пример #2
0
    def init_model(self):
        """initializes the model with the config file"""
        if self.config["model"] == "resnet":
            network = models.resnext50_32x4d(pretrained=True)
        elif self.config["model"] == "vgg19":
            network = models.vgg19(pretrained=True)
        elif self.config["model"] == "densenet":
            network = models.densenet121(pretrained=True)
        elif self.config["model"] == "inception":
            network = models.inception_v3(pretrained=True)
        elif self.config["model"] == "mobile":
            network = models.mobilenet_v2(pretrained=True)
        elif self.config["model"] == "shuffle":
            network = models.shufflenet_v2_x0_5(pretrained=True)
        elif self.config["model"] == "squeeze":
            network = models.squeezenet1_1(pretrained=True)
        elif self.config["model"] == "resnetx":
            network = models.resnext101_32x8d(pretrained=True)
        elif self.config["model"] == "masnet":
            network = models.mnasnet1_0(pretrained=True)
        elif self.config["model"] == "googlenet":
            network = models.googlenet(pretrained=True)
        elif self.config["model"] == "alexnet":
            network = models.alexnet(pretrained=True)
        else:
            print("Invalid Model")

        network.eval()
        self.model = network.to(self.device)

        if self.config["fp16"]:
            scaler = torch.cuda.amp.GradScaler()
            self.model = self.model.half()
Пример #3
0
def download_model(model_name):
    if model_name == "mobilenet_v2":
        model = models.mobilenet_v2(pretrained=True).eval()
    elif model_name == "resnet18":
        model = models.resnet18(pretrained=True).eval()
    elif model_name == "resnet34":
        model = models.resnet34(pretrained=True).eval()
    elif model_name == "resnet50":
        model = models.resnet50(pretrained=True).eval()
    elif model_name == "resnet101":
        model = models.resnet101(pretrained=True).eval()
    elif model_name == "resnet152":
        model = models.resnet152(pretrained=True).eval()
    elif model_name == "shufflenet_v2_x0_5":
        model = models.shufflenet_v2_x0_5(pretrained=True).eval()
    elif model_name == "shufflenet_v2_x1_0":
        model = models.shufflenet_v2_x1_0(pretrained=True).eval()
    elif model_name == "squeezenet1_0":
        model = models.squeezenet1_0(pretrained=True).eval()
    elif model_name == "squeezenet1_1":
        model = models.squeezenet1_1(pretrained=True).eval()
    elif model_name == "vgg11":
        model = models.vgg11(pretrained=True).eval()
    elif model_name == "vgg13":
        model = models.vgg13(pretrained=True).eval()
    elif model_name == "vgg16":
        model = models.vgg16(pretrained=True).eval()
    elif model_name == "vgg19":
        model = models.vgg19(pretrained=True).eval()
    elif model_name == "wide_resnet50_2":
        model = models.wide_resnet50_2(pretrained=True).eval()
    return model
Пример #4
0
def shufflenet_v2_x05(pretrained=False, imagenet_weight=False):
    """Constructs a Shufflenet-V2_x05 model.
    Args:
      pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    print('=== Using Shufflenet-V2_x05 ===')
    model = models.shufflenet_v2_x0_5()
    if pretrained:
        if imagenet_weight:
            print('=== use {} as backbone'.format(imagenet_weight))
            state_dict = torch.load(imagenet_weight)['state_dict']
            state_dict = exchange_weightkey_in_state_dict(state_dict)
            model.load_state_dict(state_dict)
        else:
            print('=== use pytorch default backbone')
            model = models.shufflenet_v2_x0_5(pretrained=True)
    return model
Пример #5
0
 def __init__(self, num_classes=2):
     super(ShuffleNet, self).__init__()
     self.model_name = "ShuffleNet"
     model = models.shufflenet_v2_x0_5(pretrained=True)
     for param in model.parameters():
         param.requires_grad = False
     model.fc = nn.Linear(model.fc.in_features, num_classes)
     self.model = model
Пример #6
0
def get_shufflenet_v2_x0_5(class_num):
    model = models.shufflenet_v2_x0_5(pretrained=True)
    set_parameter_requires_grad(model)
    model.name = 'shufflenet_v2_x0_5'

    n_inputs = model.fc.in_features
    model.fc = nn.Linear(n_inputs, class_num)

    return model, 244
Пример #7
0
    def test_shufflenet_v2_dynamic_axes(self):
        model = models.shufflenet_v2_x0_5(pretrained=True)
        dummy_input = torch.randn(1, 3, 224, 224, requires_grad=True)
        test_inputs = torch.cat([dummy_input, dummy_input, dummy_input], 0)

        self.run_model(model, [(dummy_input,), (test_inputs,)],
                       input_names=["input_images"],
                       output_names=["output"],
                       dynamic_axes={"input_images": {0: 'batch_size'}, "output": {0: 'batch_size'}},
                       tolerate_small_mismatch=True)
Пример #8
0
def shufflenet_v2_x0_5_nc_1k():
    m = shufflenet_v2_x0_5(pretrained=True)
    m.fc = nn.Identity()
    del m.conv5[2], m.conv5[1]  # remove ReLU and BN
    m.conv5[0] = nn.Conv2d(192,
                           1000,
                           kernel_size=(1, 1),
                           stride=(1, 1),
                           bias=True)
    return m
    def __init__(self, pretrained=True):
        super().__init__()
        self.shuffle = models.shufflenet_v2_x0_5(pretrained=pretrained)
        # self.features = self.mobile.features
        self.conv1 = self.shuffle.conv1
        self.maxpool = self.shuffle.maxpool
        self.stage2 = self.shuffle.stage2
        self.stage3 = self.shuffle.stage3
        self.stage4 = self.shuffle.stage4
        self.conv5 = self.shuffle.conv5

        self.fc = nn.Linear(self.shuffle._stage_out_channels[-1], 6)
Пример #10
0
def get_shufflenet_model(
    model_name, output_dim,
):
    """ Helper function to get a model

    :param model_name: Name of the model
    :type model_name: str
    :param output_dim: Output dimension of the model
    :type output_dim: int

    :return model: The model
    :rtype: ShuffleNetV2
    """
    # Getting the model
    if model_name == "shufflenet_v2_x0_5":
        model = shufflenet_v2_x0_5(num_classes=output_dim)
        pretrained_model = models.shufflenet_v2_x0_5(pretrained=True)
    elif model_name == "shufflenet_v2_x1_0":
        model = shufflenet_v2_x1_0(num_classes=output_dim)
        pretrained_model = models.shufflenet_v2_x1_0(pretrained=True)
    elif model_name == "shufflenet_v2_x1_5":
        model = shufflenet_v2_x1_5(num_classes=output_dim)
        pretrained_model = models.shufflenet_v2_x1_5(pretrained=True)
    elif model_name == "shufflenet_v2_x2_0":
        model = shufflenet_v2_x2_0(num_classes=output_dim)
        pretrained_model = models.shufflenet_v2_x2_0(pretrained=True)
    else:
        model = shufflenet_v2_x0_5(num_classes=output_dim)
        pretrained_model = models.shufflenet_v2_x0_5(pretrained=True)

    IN_FEATURES = pretrained_model.fc.in_features

    fc = nn.Linear(IN_FEATURES, output_dim)

    pretrained_model.fc = fc

    model.load_state_dict(pretrained_model.state_dict())

    return model
Пример #11
0
def get_shufflenet_v2_0_5(output_dim=2, weight=None):
    model = models.shufflenet_v2_x0_5(pretrained=True)
    for parma in model.parameters():
        parma.requires_grad = False

    model.fc = torch.nn.Linear(1024, output_dim)
    for parma in model.fc.parameters():
        parma.requires_grad = True

    if weight:
        model.load_state_dict(torch.load(weight))

    return model
Пример #12
0
def pytorch_shufflenetv2(request: Any) -> ModelAndData:
    if request.config.option.skipslow:
        pytest.skip()

    import torchvision.models as models

    model = models.shufflenet_v2_x0_5(pretrained=True).eval()
    preprocessing = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], axis=-3)
    fmodel = fbn.PyTorchModel(model, bounds=(0, 1), preprocessing=preprocessing)

    x, y = fbn.samples(fmodel, dataset="imagenet", batchsize=8)
    x = ep.astensor(x)
    y = ep.astensor(y)
    return fmodel, x, y
def convert_shufflenetv2():
    # model= models.shufflenet_v2_x1_0(pretrained=False, num_classes=9)
    # path = r"checkpoint/data_11_16/shufflenetv2/pre/111/shufflenetv2_1_my_acc=97.8541.pth"
    # to_path = r"checkpoint/data_11_16/shufflenetv2/pre/111/shufflenetv2_1.onnx"

    model = models.shufflenet_v2_x0_5(pretrained=False, num_classes=9)
    path = r"checkpoint/data_11_16/shufflenetv2/pre/333/shufflenetv2_05_my_acc=99.5708.pth"
    to_path = r"checkpoint/data_11_16/shufflenetv2/pre/333/shufflenetv2_05_my.onnx"

    checkpoint = torch.load(path)
    model.load_state_dict(checkpoint["net"])
    print("loaded model with acc:{}".format(checkpoint["acc"]))
    model.cuda()
    # dummy_input = torch.randn(10, 3, 224, 224)
    dummy_input = torch.randn(1, 3, 224, 224, device='cuda')
    torch.onnx.export(model, dummy_input, to_path, verbose=True)
Пример #14
0
def main():
    parser = argparse.ArgumentParser(description='Process args for Triplet Net Training')
    parser.add_argument("--val_dir", type=str, help="Val directory",
                        default="/home/delta_one/Metric_Learning/tiny-imagenet-200/val")
    parser.add_argument("--val_annotation_file", type=str, help="Val Annotation File",
                        default="/home/delta_one/Metric_Learning/tiny-imagenet-200/val/val_annotations.txt")
    parser.add_argument('--classes', type=str, nargs='+', default=\
                        ['n01443537', 'n01629819', 'n01641577', 'n01644900', 'n01698640', 'n01742172', 'n01768244', 'n01770393', 'n01774384', 'n01774750'],
                        help='Classes used for Train and Eval')
    parser.add_argument('--samples_per_class', type=int, default=50,
                        help='# Samples used for Test')
    parser.add_argument('--batch_size_test', type=int, default=30,
                        help='validation set input batch size')

    args = parser.parse_args()

    transform_test = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
            ])

    val_dataset = TinyImagnet_Val(root_dir=args.val_dir, transform=transform_test,
                        annotation_file=args.val_annotation_file, given_classes=args.classes,
                        samples_per_class=args.samples_per_class)
    nw = 4 if torch.cuda.is_available() else 0
    val_dataloader = DataLoader(val_dataset, batch_size=args.batch_size_test,
                                    num_workers=nw, shuffle=False)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    writer = SummaryWriter(log_dir="logs/")

    model_dict = {
        "AlexNet": models.alexnet(pretrained=True),
        "DenseNet": models.densenet121(pretrained=True),
        "MNASNet": models.mnasnet0_5(pretrained=True),
        "MobileNetV2": models.mobilenet_v2(pretrained=True),
        "ResNet18": models.resnet18(pretrained=True),
        "ResNet101": models.resnet101(pretrained=True),
        "ShuffleNet": models.shufflenet_v2_x0_5(pretrained=True),
        "SqueezeNet": models.squeezenet1_0(pretrained=True),
        "VGG19": models.vgg19(pretrained=True)
        }

    test(val_dataloader, model_dict, writer, device)
Пример #15
0
    def test_shufflenet_v2_dynamic_axes(self):
        model = models.shufflenet_v2_x0_5(
            weights=models.ShuffleNet_V2_X0_5_Weights.DEFAULT)
        dummy_input = torch.randn(1, 3, 224, 224, requires_grad=True)
        test_inputs = torch.cat([dummy_input, dummy_input, dummy_input], 0)

        self.run_model(
            model,
            [(dummy_input, ), (test_inputs, )],
            input_names=["input_images"],
            output_names=["output"],
            dynamic_axes={
                "input_images": {
                    0: "batch_size"
                },
                "output": {
                    0: "batch_size"
                }
            },
            tolerate_small_mismatch=True,
        )
Пример #16
0
def shufflenet_v2(name, pretrained):
    from torchvision.models import shufflenet_v2_x0_5, shufflenet_v2_x1_0, shufflenet_v2_x1_5, shufflenet_v2_x2_0
    imagenet_pretrained = pretrained == 'imagenet'

    if name == 'shufflenet_v2_x0_5':
        net = shufflenet_v2_x0_5(imagenet_pretrained)
    elif name == 'shufflenet_v2_x1_0':
        net = shufflenet_v2_x1_0(imagenet_pretrained)
    elif name == 'shufflenet_v2_x1_5':
        net = shufflenet_v2_x1_5(imagenet_pretrained)
    elif name == 'shufflenet_v2_x2_0':
        net = shufflenet_v2_x2_0(imagenet_pretrained)
    else:
        raise NotImplementedError(name)

    stage1 = nn.Sequential(net.conv1, net.maxpool)
    layers = [stage1, net.stage2, net.stage3, net.stage4, net.conv5]
    for stage, out in zip(layers, net._stage_out_channels):
        stage.out_channels = out

    n_pretrained = len(layers) if imagenet_pretrained else 0
    return layers, True, n_pretrained
Пример #17
0
def shufflenet(layer, use_gpu, pretrained):
    model = models.shufflenet_v2_x0_5(pretrained=pretrained)
    # print(model)
    # use_gpu = False
    for parma in model.parameters():
        parma.requires_grad = False
    # model.avgpool = torch.nn.AdaptiveAvgPool2d((7,7))
    model.conv1 = torch.nn.Sequential(
        torch.nn.Conv2d(layer,
                        24,
                        kernel_size=(3, 3),
                        stride=(2, 2),
                        padding=(1, 1),
                        bias=False),
        torch.nn.BatchNorm2d(24,
                             eps=1e-05,
                             momentum=0.1,
                             affine=True,
                             track_running_stats=True),
        torch.nn.ReLU(inplace=True))
    model.fc = torch.nn.Sequential(
        torch.nn.Linear(in_features=1024, out_features=3, bias=True))

    # for indexf,parmaf in enumerate(model.conv1.parameters()):
    #     if indexf == 0:
    #         parmaf.requires_grad = True

    # for index, parma in enumerate(model.fc.parameters()):
    #     if index == 0:
    #         parma.requires_grad = True

    if use_gpu:
        # if torch.cuda.device_count()>1:
        #     model = nn.DataParallel(model)
        model = model.cuda()
    return model
	pre_model = models.densenet121(pretrained=True, progress=True)
elif TopModelName=="densenet169":
	pre_model = models.densenet169(pretrained=True, progress=True)
elif TopModelName=="densenet161":
	pre_model = models.densenet161(pretrained=True, progress=True)
elif TopModelName=="densenet201":
	pre_model = models.densenet201(pretrained=True, progress=True)
	
elif TopModelName=="inception":
	pre_model = models.inception_v3(pretrained=True, progress=True)

elif TopModelName=="googlenet":
	pre_model = models.googlenet(pretrained=True, progress=True)

elif TopModelName=="shufflenet_v2_x0_5":
	pre_model = models.shufflenet_v2_x0_5(pretrained=True, progress=True)
elif TopModelName=="shufflenet_v2_x1_0":
	pre_model = models.shufflenet_v2_x0_5(pretrained=True, progress=True)
elif TopModelName=="shufflenet_v2_x1_5":
	pre_model = models.shufflenet_v2_x0_5(pretrained=True, progress=True)
elif TopModelName=="shufflenet_v2_x2_0":
	pre_model = models.shufflenet_v2_x0_5(pretrained=True, progress=True)

elif TopModelName=="mobilenet_v2":
	pre_model = models.mobilenet_v2(pretrained=True, progress=True)

######### ResNet's ###########
elif TopModelName=='resnet18':
	pre_model = models.resnet18(pretrained=True, progress=True)
elif TopModelName=='resnet34':
	pre_model = models.resnet34(pretrained=True, progress=True)
Пример #19
0
    def __init__(self, model, n_classes, pretrained=True):
        super(classifie, self).__init__()
        if (model == 'efficientnet-b3'):
            if (pretrained == True):
                self.cnn_arch = EfficientNet.from_pretrained('efficientnet-b3')
            else:
                self.cnn_arch = EfficientNet.from_name('efficientnet-b3')
        if (model == 'efficientnet-b2'):
            if (pretrained == True):
                self.cnn_arch = EfficientNet.from_pretrained('efficientnet-b2')
            else:
                self.cnn_arch = EfficientNet.from_name('efficientnet-b2')
        if (model == 'efficientnet-b1'):
            if (pretrained == True):
                self.cnn_arch = EfficientNet.from_pretrained('efficientnet-b1')
            else:
                self.cnn_arch = EfficientNet.from_name('efficientnet-b1')
        if (model == 'efficientnet-b0'):
            if (pretrained == True):
                self.cnn_arch = EfficientNet.from_pretrained('efficientnet-b0')
            else:
                self.cnn_arch = EfficientNet.from_name('efficientnet-b0')
        if (model == 'resnet18'):
            self.cnn_arch = models.resnet18(pretrained=pretrained)
        if (model == 'resnet34'):
            self.cnn_arch = models.resnet34(pretrained=pretrained)
        if (model == 'resnet50'):
            self.cnn_arch = models.resnet50(pretrained=pretrained)
        if (model == 'resnet101'):
            self.cnn_arch = models.resnet101(pretrained=pretrained)
        if (model == 'resnet152'):
            self.cnn_arch = models.resnet152(pretrained=pretrained)
        if (model == 'densenet121'):
            self.cnn_arch = models.densenet121(pretrained=pretrained)
        if (model == 'densenet161'):
            self.cnn_arch = models.densenet161(pretrained=pretrained)
        if (model == 'densenet169'):
            self.cnn_arch = models.densenet169(pretrained=pretrained)
        if (model == 'densenet201'):
            self.cnn_arch = models.densenet201(pretrained=pretrained)
        if (model == 'squeezenet1_0'):
            self.cnn_arch = models.squeezenet1_0(pretrained=pretrained)
        if (model == 'squeezenet1_1'):
            self.cnn_arch = models.squeezenet1_1(pretrained=pretrained)
        if (model == 'shufflenet_v2_x0_5'):
            self.cnn_arch = models.shufflenet_v2_x0_5(pretrained=pretrained)
        if (model == 'shufflenet_v2_x1_0'):
            self.cnn_arch = models.shufflenet_v2_x1_0(pretrained=pretrained)
        if (model == 'shufflenet_v2_x1_5'):
            self.cnn_arch = models.shufflenet_v2_x1_5(pretrained=pretrained)
        if (model == 'shufflenet_v2_x2_0'):
            self.cnn_arch = models.shufflenet_v2_x2_0(pretrained=pretrained)
        if (model == 'resnext50_32x4d'):
            self.cnn_arch = models.resnext50_32x4d(pretrained=pretrained)
        if (model == 'resnext101_32x8d'):
            self.cnn_arch = models.resnext101_32x8d(pretrained=pretrained)

        self.linear1 = nn.Linear(1000, 256)
        self.relu = nn.LeakyReLU()
        self.linear2 = nn.Linear(256, n_classes)
        #self.softmax = nn.Softmax(dim=1)
        self.dropout = nn.Dropout(0.7)
Пример #20
0
def import_all(download):
    """
    Commented out models do not have pre-trained variants available.

    This function will load and cache all of these models if they are not already cached.

    On CRC we can just run this initially as its own python script to download and cache the models.

    Afterwards, this function will be implemented into some other testing code that will call it in
    a similar fashion to what is shown below.
    """

    print("Loading or checking if models are cached...\n")
    print(
        "This may take a while.  Progress will be shown if models are being downloaded.\n "
    )

    ############################################################################################
    # Image Classification

    alexnet = models.alexnet(pretrained=download, progress=True)

    squeezenet1_0 = models.squeezenet1_0(pretrained=download, progress=True)
    squeezenet1_1 = models.squeezenet1_1(pretrained=download, progress=True)

    vgg16 = models.vgg16_bn(pretrained=download, progress=True)
    vgg19 = models.vgg19_bn(pretrained=download, progress=True)

    resnet18 = models.resnet18(pretrained=download, progress=True)
    resnet34 = models.resnet34(pretrained=download, progress=True)
    resnet50 = models.resnet50(pretrained=download, progress=True)
    resnet101 = models.resnet101(pretrained=download, progress=True)
    resnet152 = models.resnet152(pretrained=download, progress=True)

    densenet121 = models.densenet121(pretrained=download,
                                     progress=True,
                                     memory_efficient=False)
    densenet161 = models.densenet161(pretrained=download,
                                     progress=True,
                                     memory_efficient=False)
    densenet201 = models.densenet201(pretrained=download,
                                     progress=True,
                                     memory_efficient=False)
    densenet121_efficient = models.densenet121(pretrained=download,
                                               progress=True,
                                               memory_efficient=True)
    densenet161_efficient = models.densenet161(pretrained=download,
                                               progress=True,
                                               memory_efficient=True)
    densenet201_efficient = models.densenet201(pretrained=download,
                                               progress=True,
                                               memory_efficient=True)

    googlenet = models.googlenet(pretrained=download, progress=True)

    shufflenet_v2_1 = models.shufflenet_v2_x1_0(pretrained=download,
                                                progress=True)
    shufflenet_v2_0_5 = models.shufflenet_v2_x0_5(pretrained=download,
                                                  progress=True)
    #shufflenet_v2_1_5 = models.shufflenet_v2_x1_5(pretrained=download, progress=True)
    #shufflenet_v2_2 = models.shufflenet_v2_x2_0(pretrained=download, progress=True)

    mobilenet_v2 = models.mobilenet_v2(pretrained=download, progress=True)

    resnext50_32x4d = models.resnext50_32x4d(pretrained=download,
                                             progress=True)
    resnext101_32x8d = models.resnext101_32x8d(pretrained=download,
                                               progress=True)

    wide_resnet50_2 = models.wide_resnet50_2(pretrained=download,
                                             progress=True)
    wide_resnet101_2 = models.wide_resnet101_2(pretrained=download,
                                               progress=True)

    mnasnet1_0 = models.mnasnet1_0(pretrained=download, progress=True)
    mnasnet0_5 = models.mnasnet0_5(pretrained=download, progress=True)
    #mnasnet0_75 = models.mnasnet0_75(pretrained=download, progress=True)
    #mnasnet1_3 = models.mnasnet1_3(pretrained=download, progress=True)

    efficientnet_b0 = EfficientNet.from_pretrained('efficientnet-b0')
    efficientnet_b1 = EfficientNet.from_pretrained('efficientnet-b1')
    efficientnet_b2 = EfficientNet.from_pretrained('efficientnet-b2')
    efficientnet_b3 = EfficientNet.from_pretrained('efficientnet-b3')
    efficientnet_b4 = EfficientNet.from_pretrained('efficientnet-b4')
    efficientnet_b5 = EfficientNet.from_pretrained('efficientnet-b5')
    efficientnet_b6 = EfficientNet.from_pretrained('efficientnet-b6')
    efficientnet_b7 = EfficientNet.from_pretrained('efficientnet-b7')
    #
    #
    # ###########################################################################################
    # # Video Classification
    # # resnet_3d = models.video.r3d_18(pretrained=download, progress=True)
    # # resnet_mixed_conv = models.video.mc3_18(pretrained=download, progress=True)
    # # resnet_2_1D = models.video.r2plus1d_18(pretrained=download, progress=True)
    #
    # ###########################################################################################
    # # Object Detection
    #
    fasterrcnn_resnet50 = models.detection.fasterrcnn_resnet50_fpn(
        pretrained=download,
        progress=True,
        num_classes=91,
        pretrained_backbone=True)
    maskcnn_resnet50 = models.detection.maskrcnn_resnet50_fpn(
        pretrained=download,
        progress=True,
        num_classes=91,
        pretrained_backbone=True)
    keypointrcnn_resnet50 = models.detection.keypointrcnn_resnet50_fpn(
        pretrained=download,
        progress=True,
        num_classes=2,
        num_keypoints=17,
        pretrained_backbone=True)
    #
    # ###########################################################################################
    # # Semantic Segmentation
    #
    fcn_resnet50 = models.segmentation.fcn_resnet50(pretrained=False,
                                                    progress=True,
                                                    num_classes=21,
                                                    aux_loss=None)
    fcn_resnet101 = models.segmentation.fcn_resnet101(pretrained=download,
                                                      progress=True,
                                                      num_classes=21,
                                                      aux_loss=None)

    deeplabv3_resnet50 = models.segmentation.deeplabv3_resnet50(
        pretrained=False, progress=True, num_classes=21, aux_loss=None)
    deeplabv3_resnet101 = models.segmentation.deeplabv3_resnet101(
        pretrained=False, progress=True, num_classes=21, aux_loss=None)

    ###########################################################################################
    # Generative Adversarial Networks

    ###########################################################################################
    models_dict = {
        "alexnet": alexnet,
        "fcn_resnet50": fcn_resnet50,
        "fcn_resnet101": fcn_resnet101,
        "deeplabv3_resnet50": deeplabv3_resnet50,
        "deeplabv3_resnet101": deeplabv3_resnet101,
        "squeezenet1_0": squeezenet1_0,
        "squeezenet1_1": squeezenet1_1,
        "vgg16": vgg16,
        "vgg19": vgg19,
        "resnet18": resnet18,
        "resnet34": resnet34,
        "resnet50": resnet50,
        "resnet101": resnet101,
        "resnet152": resnet152,
        "densenet121": densenet121,
        "densenet161": densenet161,
        "densenet201": densenet201,
        "densenet121_efficient": densenet121_efficient,
        "densenet161_efficient": densenet161_efficient,
        "densenet201_efficient": densenet201_efficient,
        "googlenet": googlenet,
        "shufflenet_v2_1": shufflenet_v2_1,
        "shufflenet_v2_0_5": shufflenet_v2_0_5,
        #"shufflenet_v2_1_5": shufflenet_v2_1_5,
        #"shufflenet_v2_2": shufflenet_v2_2,
        "mobilenet_v2": mobilenet_v2,
        "resnext50_32x4d": resnext50_32x4d,
        "resnext101_32x4d": resnext101_32x8d,
        "wide_resnet50_2": wide_resnet50_2,
        "wide_resnet101_2": wide_resnet101_2,
        "mnasnet1_0": mnasnet1_0,
        #"mnasnet1_3": mnasnet1_3,
        "mnasnet0_5": mnasnet0_5,
        #"mnasnet0_75": mnasnet0_75,
        "efficientnet_b0": efficientnet_b0,
        "efficientnet_b1": efficientnet_b1,
        "efficientnet_b2": efficientnet_b2,
        "efficientnet_b3": efficientnet_b3,
        "efficientnet_b4": efficientnet_b4,
        "efficientnet_b5": efficientnet_b5,
        "efficientnet_b6": efficientnet_b6,
        "efficientnet_b7": efficientnet_b7,
    }
    # "maskcnn_resnet50" : maskcnn_resnet50,
    # "keypointrcnn_resnet50" : keypointrcnn_resnet50,
    # "fasterrcnn_resnet50" : fasterrcnn_resnet50,
    # "resnet_3d" : resnet_3d,
    # "resnet_mixed_conv" : resnet_mixed_conv,
    # "resnet_2_1D" : resnet_2_1D,
    return models_dict
Пример #21
0
def main(train_loader, train_datasets, valid_loader):
    '''args: model_arch, train_loader, train_datasets, valid_loader, epochs, learning_rate, hidden_units, device, save_dir

    saves checkpoint under save_dir

    returns: checkpoint with {'epoch_tot',
                              'model',
                              'criterion',
                              'optimizer',
                              'optimizer.state_dict',
                              'model.state_dict',
                              'model.class_to_idx'}'''

    arg = input_args()
    model_arch = arg.arch
    hidden_units = arg.hidden_units
    learning_rate = arg.learning_rate
    device = arg.device
    epochs = arg.epochs
    save_dir = arg.save_dir

    if model_arch == 'alexnet':
        gs_vgg = models.alexnet(pretrained=True)
    elif model_arch == 'vgg11':
        gs_vgg = models.vgg11(pretrained=True)
    elif model_arch == 'vgg11_bn':
        gs_vgg = models.vgg11_bn(pretrained=True)
    elif model_arch == 'vgg13':
        gs_vgg = models.vgg13(pretrained=True)
    elif model_arch == 'vgg13_bn':
        gs_vgg = models.vgg13_bn(pretrained=True)
    elif model_arch == 'vgg16':
        gs_vgg = models.vgg16(pretrained=True)
    elif model_arch == 'vgg16_bn':
        gs_vgg = models.vgg16_bn(pretrained=True)
    elif model_arch == 'vgg19':
        gs_vgg = models.vgg19(pretrained=True)
    elif model_arch == 'vgg19_bn':
        gs_vgg = models.vgg19_bn(pretrained=True)
    elif model_arch == 'resnet18':
        gs_vgg = models.resnet18(pretrained=True)
    elif model_arch == 'resnet34':
        gs_vgg = models.resnet34(pretrained=True)
    elif model_arch == 'resnet50':
        gs_vgg = models.resnet50(pretrained=True)
    elif model_arch == 'resnet101':
        gs_vgg = models.resnet101(pretrained=True)
    elif model_arch == 'resnet152':
        gs_vgg = models.resnet152(pretrained=True)
    elif model_arch == 'squeezenet1_0':
        gs_vgg = models.squeezenet1_0(pretrained=True)
    elif model_arch == 'squeezenet1_1':
        gs_vgg = models.squeezenet1_1(pretrained=True)
    elif model_arch == 'densenet121':
        gs_vgg = models.densenet121(pretrained=True)
    elif model_arch == 'densenet169':
        gs_vgg = models.densenet169(pretrained=True)
    elif model_arch == 'densenet161':
        gs_vgg = models.densenet161(pretrained=True)
    elif model_arch == 'densenet201':
        gs_vgg = models.densenet201(pretrained=True)
    elif model_arch == 'inception_v3':
        gs_vgg = models.inception_v3(pretrained=True)
    elif model_arch == 'googlenet':
        gs_vgg = models.googlenet(pretrained=True)
    elif model_arch == 'shufflenet_v2_x0_5':
        gs_vgg = models.shufflenet_v2_x0_5(pretrained=True)
    elif model_arch == 'shufflenet_v2_x1_0':
        gs_vgg = models.shufflenet_v2_x1_0(pretrained=True)
    elif model_arch == 'shufflenet_v2_x1_5':
        gs_vgg = models.shufflenet_v2_x1_5(pretrained=True)
    elif model_arch == 'shufflenet_v2_x2_0':
        gs_vgg = models.shufflenet_v2_x2_0(pretrained=True)
    elif model_arch == 'mobilenet_v2':
        gs_vgg = models.mobilenet_v2(pretrained=True)
    elif model_arch == 'resnext50_32x4d':
        gs_vgg = models.resnext50_32x4d(pretrained=True)
    elif model_arch == 'resnext101_32x8d':
        gs_vgg = models.resnext101_32x8d(pretrained=True)
    elif model_arch == 'wide_resnet50_2':
        gs_vgg = models.wide_resnet50_2(pretrained=True)
    elif model_arch == 'wide_resnet101_2':
        gs_vgg = models.wide_resnet101_2(pretrained=True)
    elif model_arch == 'mnasnet0_5':
        gs_vgg = models.mnasnet0_5(pretrained=True)
    elif model_arch == 'mnasnet0_75':
        gs_vgg = models.mnasnet0_75(pretrained=True)
    elif model_arch == 'mnasnet1_0':
        gs_vgg = models.mnasnet1_0(pretrained=True)
    elif model_arch == 'mnasnet1_3':
        gs_vgg = models.mnasnet1_3(pretrained=True)

    epoch_tot = 0

    for parameters in gs_vgg.parameters():
        parameters.requires_grad = False

    try:
        input_layer = gs_vgg.classifier[0].in_features
    except:
        input_layer = gs_vgg.classifier.in_features
    hidden_layers = [(int(hidden_units * 0.68)), (int(hidden_units * 0.32))]
    output_layer = len(train_loader)

    gs_vgg.classifier = nn.Sequential(
        nn.Linear(input_layer, hidden_layers[0]),
        nn.ReLU(),
        nn.Dropout(p=0.3),
        nn.Linear(hidden_layers[0], hidden_layers[1]),
        nn.ReLU(),
        #nn.Linear(hidden_layers[1], output_layer),
        nn.Linear(hidden_layers[1], 102),
        nn.LogSoftmax(dim=1))

    criterion = nn.NLLLoss()
    optimizer = optim.Adam(gs_vgg.classifier.parameters(), lr=learning_rate)

    gs_vgg.to(device)
    step_num = 0
    epoch = epochs
    running_loss = 0
    print_every = 10
    for e in range(epoch):
        epoch_tot += 1
        for images, labels in train_loader:

            gs_vgg.train()

            images, labels = images.to(device), labels.to(device)

            optimizer.zero_grad()

            output = gs_vgg.forward(images)
            loss = criterion(output, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()

            step_num += 1

            if step_num % print_every == 0:
                test_loss = 0
                accuracy = 0
                gs_vgg.eval()
                for images, labels in valid_loader:
                    images, labels = images.to(device), labels.to(device)
                    output = gs_vgg.forward(images)
                    loss = criterion(output, labels)

                    test_loss += loss.item()

                    prob = torch.exp(output)
                    top_p, top_class = prob.topk(1, dim=1)
                    equals = top_class == labels.view(*top_class.shape)
                    accuracy += torch.mean(equals.type(
                        torch.FloatTensor)).item()

                print(
                    f"Total Epochs: {epoch_tot}.. "
                    f"Train loss: {running_loss/print_every:.3f}.. "
                    f"Test loss: {test_loss/len(valid_loader):.3f}.. "
                    f"Test accuracy: {(accuracy/len(valid_loader))*100:.1f}%")
                running_loss = 0
                gs_vgg.train()
    gs_vgg.class_to_idx = train_datasets.class_to_idx
    gs_checkpoint = {
        'epoch_tot': epoch_tot,
        'model': gs_vgg,
        'criterion': criterion,
        'optimizer': optimizer,
        'optimizer.state_dict': optimizer.state_dict(),
        'model.state_dict': gs_vgg.state_dict(),
        'model.class_to_idx': gs_vgg.class_to_idx
    }
    torch.save(gs_checkpoint, save_dir)
    return gs_checkpoint
Пример #22
0
def get_model(name, device):
    if name == "normal_cnn":
        model = Net().to(device)
        return model
    elif name == "alexnet":
        model = models.alexnet().to(device)
        num_features = model.classifier[6].in_features
        model.classifier[6] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "vgg11":
        model = models.vgg11().to(device)
        num_features = model.classifier[6].in_features
        model.classifier[6] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "vgg13":
        model = models.vgg13().to(device)
        num_features = model.classifier[6].in_features
        model.classifier[6] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "vgg16":
        model = models.vgg16().to(device)
        num_features = model.classifier[6].in_features
        model.classifier[6] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "vgg19":
        model = models.vgg19().to(device)
        num_features = model.classifier[6].in_features
        model.classifier[6] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "vgg11_bn":
        model = models.vgg11_bn().to(device)
        num_features = model.classifier[6].in_features
        model.classifier[6] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "vgg13_bn":
        model = models.vgg13_bn().to(device)
        num_features = model.classifier[6].in_features
        model.classifier[6] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "vgg16_bn":
        model = models.vgg16_bn().to(device)
        num_features = model.classifier[6].in_features
        model.classifier[6] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "vgg19_bn":
        model = models.vgg19_bn().to(device)
        num_features = model.classifier[6].in_features
        model.classifier[6] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "densenet121":
        model = models.densenet121().to(device)
        num_features = model.classifier.in_features
        model.classifier = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "densenet161":
        model = models.densenet161().to(device)
        num_features = model.classifier.in_features
        model.classifier = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "densenet169":
        model = models.densenet169().to(device)
        num_features = model.classifier.in_features
        model.classifier = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "densenet201":
        model = models.densenet201().to(device)
        num_features = model.classifier.in_features
        model.classifier = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "resnet18":
        model = models.resnet18().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "resnet34":
        model = models.resnet34().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "resnet50":
        model = models.resnet50().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "resnet101":
        model = models.resnet101().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "resnet152":
        model = models.resnet152().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "googlenet":
        model = models.googlenet(aux_logits=False).to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "inception_v3":
        model = models.inception_v3(aux_logits=False).to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "shufflenet_v2_x0_5":
        model = models.shufflenet_v2_x0_5().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "shufflenet_v2_x1_0":
        model = models.shufflenet_v2_x1_0().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "shufflenet_v2_x1_5":
        model = models.shufflenet_v2_x1_5().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "shufflenet_v2_x2_0":
        model = models.shufflenet_v2_x2_0().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "mobilenet_v2":
        model = models.mobilenet_v2().to(device)
        num_features = model.classifier[1].in_features
        model.classifier[1] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "resnext50_32x4d":
        model = models.resnext50_32x4d().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "resnext101_32x8d":
        model = models.resnext101_32x8d().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "wide_resnet50_2":
        model = models.wide_resnet50_2().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "wide_resnet101_2":
        model = models.wide_resnet101_2().to(device)
        num_features = model.fc.in_features
        model.fc = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "mnasnet0_5":
        model = models.mnasnet0_5().to(device)
        num_features = model.classifier[1].in_features
        model.classifier[1] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "mnasnet0_75":
        model = models.mnasnet0_75().to(device)
        num_features = model.classifier[1].in_features
        model.classifier[1] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "mnasnet1_0":
        model = models.mnasnet1_0().to(device)
        num_features = model.classifier[1].in_features
        model.classifier[1] = nn.Linear(num_features, 1).to(device)
        return model
    elif name == "mnasnet1_3":
        model = models.mnasnet1_3().to(device)
        num_features = model.classifier[1].in_features
        model.classifier[1] = nn.Linear(num_features, 1).to(device)
        return model
Пример #23
0
def modeldict(mmd):
    if mmd == 'alexnet_pt': out_model = models.alexnet(pretrained=True)
    elif mmd == 'alexnet': out_model = models.alexnet(pretrained=False)
    elif mmd == 'vgg11_pt': out_model = models.vgg11(pretrained=True)
    elif mmd == 'vgg11': out_model = models.vgg11(pretrained=False)
    elif mmd == 'vgg11bn_pt': out_model = models.vgg11_bn(pretrained=True)
    elif mmd == 'vgg11bn': out_model = models.vgg11_bn(pretrained=False)
    elif mmd == 'vgg13_pt': out_model = models.vgg13(pretrained=True)
    elif mmd == 'vgg13': out_model = models.vgg13(pretrained=False)
    elif mmd == 'vgg13bn_pt': out_model = models.vgg13_bn(pretrained=True)
    elif mmd == 'vgg13bn': out_model = models.vgg13_bn(pretrained=False)
    elif mmd == 'vgg16_pt': out_model = models.vgg16(pretrained=True)
    elif mmd == 'vgg16': out_model = models.vgg16(pretrained=False)
    elif mmd == 'vgg16bn_pt': out_model = models.vgg16_bn(pretrained=True)
    elif mmd == 'vgg16bn': out_model = models.vgg16_bn(pretrained=False)
    elif mmd == 'vgg19_pt': out_model = models.vgg19(pretrained=True)
    elif mmd == 'vgg19': out_model = models.vgg19(pretrained=False)
    elif mmd == 'vgg19bn_pt': out_model = models.vgg19_bn(pretrained=True)
    elif mmd == 'vgg19bn': out_model = models.vgg19_bn(pretrained=False)
    elif mmd == 'resnet18': out_model = models.resnet18(pretrained=False)
    elif mmd == 'resnet18_pt': out_model = models.resnet18(pretrained=True)
    elif mmd == 'resnet34': out_model = models.resnet34(pretrained=False)
    elif mmd == 'resnet34_pt': out_model = models.resnet34(pretrained=True)
    elif mmd == 'resnet50': out_model = models.resnet50(pretrained=False)
    elif mmd == 'resnet50_pt': out_model = models.resnet50(pretrained=True)
    elif mmd == 'resnet101': out_model = models.resnet101(pretrained=False)
    elif mmd == 'resnet101_pt': out_model = models.resnet101(pretrained=True)
    elif mmd == 'resnet152': out_model = models.resnet152(pretrained=False)
    elif mmd == 'resnet152_pt': out_model = models.resnet152(pretrained=True)
    elif mmd == 'squeezenet10_pt':
        out_model = models.squeezenet1_0(pretrained=True)
    elif mmd == 'squeezenet10':
        out_model = models.squeezenet1_0(pretrained=False)
    elif mmd == 'squeezenet11_pt':
        out_model = models.squeezenet1_1(pretrained=True)
    elif mmd == 'squeezenet11':
        out_model = models.squeezenet1_1(pretrained=False)
    elif mmd == 'densenet121_pt':
        out_model = models.densenet121(pretrained=True)
    elif mmd == 'densenet121':
        out_model = models.densenet121(pretrained=False)
    elif mmd == 'densenet161_pt':
        out_model = models.densenet161(pretrained=True)
    elif mmd == 'densenet161':
        out_model = models.densenet161(pretrained=False)
    elif mmd == 'densenet169_pt':
        out_model = models.densenet169(pretrained=True)
    elif mmd == 'densenet169':
        out_model = models.densenet169(pretrained=False)
    elif mmd == 'densenet201_pt':
        out_model = models.densenet201(pretrained=True)
    elif mmd == 'densenet201':
        out_model = models.densenet201(pretrained=False)
    elif mmd == 'inception_pt':
        out_model = models.inception_v3(pretrained=True, aux_logits=False)
    elif mmd == 'inception':
        out_model = models.inception_v3(pretrained=False, aux_logits=False)
    elif mmd == 'inceptionv4_pt':
        out_model = pretrainedmodels.__dict__['inceptionv4'](
            num_classes=1000, pretrained='imagenet')
    elif mmd == 'inceptionv4':
        out_model = pretrainedmodels.__dict__['inceptionv4'](num_classes=1000,
                                                             pretrained=None)
    elif mmd == 'inceptionresnetv2_pt':
        out_model = pretrainedmodels.__dict__['inceptionresnetv2'](
            num_classes=1000, pretrained='imagenet')
    elif mmd == 'inceptionresnetv2':
        out_model = pretrainedmodels.__dict__['inceptionresnetv2'](
            num_classes=1000, pretrained=None)
    elif mmd == 'googlenet_pt':
        out_model = models.googlenet(pretrained=True, aux_logits=False)
    elif mmd == 'googlenet':
        out_model = models.googlenet(pretrained=False, aux_logits=False)
    elif mmd == 'shufflenet05_pt':
        out_model = models.shufflenet_v2_x0_5(pretrained=True)
    elif mmd == 'shufflenet05':
        out_model = models.shufflenet_v2_x0_5(pretrained=False)
    elif mmd == 'shufflenet10_pt':
        out_model = models.shufflenet_v2_x1_0(pretrained=True)
    elif mmd == 'shufflenet10':
        out_model = models.shufflenet_v2_x1_0(pretrained=False)
    elif mmd == 'shufflenet20':
        out_model = models.shufflenet_v2_x2_0(pretrained=False)
    elif mmd == 'mobilenet_pt':
        out_model = models.mobilenet_v2(pretrained=True)
    elif mmd == 'mobilenet':
        out_model = models.mobilenet_v2(pretrained=False)
    elif mmd == 'resnext50_32x4d_pt':
        out_model = models.resnext50_32x4d(pretrained=True)
    elif mmd == 'resnext50_32x4d':
        out_model = models.resnext50_32x4d(pretrained=False)
    elif mmd == 'resnext101_32x8d_pt':
        out_model = models.resnext101_32x8d(pretrained=True)
    elif mmd == 'resnext101_32x8d':
        out_model = models.resnext101_32x8d(pretrained=False)
    elif mmd == 'wide_resnet50_2_pt':
        out_model = models.wide_resnet50_2(pretrained=True)
    elif mmd == 'wide_resnet50_2':
        out_model = models.wide_resnet50_2(pretrained=False)
    elif mmd == 'wide_resnet101_2_pt':
        out_model = models.wide_resnet101_2(pretrained=True)
    elif mmd == 'wide_resnet101_2':
        out_model = models.wide_resnet101_2(pretrained=False)
    elif mmd == 'mnasnet05_pt':
        out_model = models.mnasnet0_5(pretrained=True)
    elif mmd == 'mnasnet05':
        out_model = models.mnasnet0_5(pretrained=False)
    elif mmd == 'mnasnet075':
        out_model = models.mnasnet0_75(pretrained=False)
    elif mmd == 'mnasnet10_pt':
        out_model = models.mnasnet1_0(pretrained=True)
    elif mmd == 'mnasnet10':
        out_model = models.mnasnet1_0(pretrained=False)
    elif mmd == 'mnasnet13':
        out_model = models.mnasnet1_3(pretrained=False)
    elif mmd == 'xception_pt':
        out_model = pretrainedmodels.__dict__['xception'](
            num_classes=1000, pretrained='imagenet')
    elif mmd == 'xception':
        out_model = pretrainedmodels.__dict__['xception'](num_classes=1000,
                                                          pretrained=None)
    elif mmd == 'dpn68_pt':
        out_model = pretrainedmodels.__dict__['dpn68'](num_classes=1000,
                                                       pretrained='imagenet')
    elif mmd == 'dpn68':
        out_model = pretrainedmodels.__dict__['dpn68'](num_classes=1000,
                                                       pretrained=None)
    elif mmd == 'dpn98_pt':
        out_model = pretrainedmodels.__dict__['dpn98'](num_classes=1000,
                                                       pretrained='imagenet')
    elif mmd == 'dpn98':
        out_model = pretrainedmodels.__dict__['dpn98'](num_classes=1000,
                                                       pretrained=None)
    elif mmd == 'dpn131_pt':
        out_model = pretrainedmodels.__dict__['dpn131'](num_classes=1000,
                                                        pretrained='imagenet')
    elif mmd == 'dpn131':
        out_model = pretrainedmodels.__dict__['dpn131'](num_classes=1000,
                                                        pretrained=None)
    elif mmd == 'dpn68b_pt':
        out_model = pretrainedmodels.__dict__['dpn68b'](
            num_classes=1000, pretrained='imagenet+5k')
    elif mmd == 'dpn68b':
        out_model = pretrainedmodels.__dict__['dpn68b'](num_classes=1000,
                                                        pretrained=None)
    elif mmd == 'dpn92_pt':
        out_model = pretrainedmodels.__dict__['dpn92'](
            num_classes=1000, pretrained='imagenet+5k')
    elif mmd == 'dpn92':
        out_model = pretrainedmodels.__dict__['dpn92'](num_classes=1000,
                                                       pretrained=None)
    elif mmd == 'dpn107_pt':
        out_model = pretrainedmodels.__dict__['dpn107'](
            num_classes=1000, pretrained='imagenet+5k')
    elif mmd == 'dpn107':
        out_model = pretrainedmodels.__dict__['dpn107'](num_classes=1000,
                                                        pretrained=None)
    elif mmd == 'fbresnet152_pt':
        out_model = pretrainedmodels.__dict__['fbresnet152'](
            num_classes=1000, pretrained='imagenet')
    elif mmd == 'fbresnet152':
        out_model = pretrainedmodels.__dict__['fbresnet152'](num_classes=1000,
                                                             pretrained=None)
    else:
        out_model = None
        print('Invalid model name. Terminated.')
        exit(0)
    return out_model
Пример #24
0
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision.models import alexnet, vgg11, mobilenet, mnasnet0_5, resnet18, resnet34, mobilenet_v2, densenet121, shufflenet_v2_x0_5, squeezenet1_0, vgg19
from ai.ai import ArithmeticIntensity
from thop import profile
import timeit

models = [
    alexnet(),
    resnet18(),
    resnet34(),
    mobilenet_v2(),
    densenet121(),
    shufflenet_v2_x0_5(),
    squeezenet1_0(),
    vgg19()
]
model_names = [
    alexnet.__name__, resnet18.__name__, resnet34.__name__,
    mobilenet_v2.__name__, densenet121.__name__, shufflenet_v2_x0_5.__name__,
    squeezenet1_0.__name__, vgg19.__name__
]
metrics = []

for model in models:
    ai_profiler = ArithmeticIntensity(model=model, input_dims=(1, 3, 224, 224))
    ai, macs = ai_profiler.get_metrics()
    tensor = torch.randn(5, 3, 224, 224)
    _, params = profile(model, inputs=(tensor, ))
Пример #25
0
 def __init__(self):
     super(ShuffleneTiny, self).__init__()
     self.model = models.shufflenet_v2_x0_5()
     self.model.fc = nn.Sequential(nn.BatchNorm1d(1024), nn.Linear(1024, 3))
def shufflenetv2(num_classes, pretrained=True, small=False):
    net = models.shufflenet_v2_x0_5(pretrained) if small else models.shufflenet_v2_x1_0(pretrained)
    net.fc = nn.Linear(1024, num_classes)
    return net
Пример #27
0
 def feature_extractor(cls):
     shuffle = models.shufflenet_v2_x0_5(pretrained=True)
     return nn.Sequential(*list(shuffle.children())[:-1])
def shufflenet():
    sf1=models.shufflenet_v2_x0_5()
    sf1.conv1[0]=nn.Conv2d(1, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    sf1.fc=nn.Linear(1024,1,True)
    return sf1.to('cuda')
Пример #29
0
    def __init__(self, model_type=8, cnn_type='x0_5', cnn_layer_test=0):
        super(LightWeight_feat, self).__init__()
        self.model_type = model_type
        self.cnn_type = cnn_type
        self.use_layer = cnn_layer_test
        self.bn = True  # BenchNorm

        # select cnn_model from SqueezeNet, MobileNet, ShuffleNet, MnasNet
        if self.model_type == LightCNN.SqueezeNet.value:  # use SqueezeNet
            if cnn_type == '1_0':  # V1_1_0
                self.model = models.squeezenet1_0(pretrained=True)
                self.sel_feat_layer = {0, 4, 8,
                                       12}  # conv, conv2_2, conv3_2, cam
            else:  # V1_x1_1
                self.cnn_type = '1_1'
                self.model = models.squeezenet1_1(pretrained=True)
                self.sel_feat_layer = {0, 4, 7,
                                       12}  # conv, conv2_2, conv3_2, cam
            print('use SqueezeNet', self.cnn_type)

        elif self.model_type == LightCNN.MobileNet.value:  # use MobileNet
            if cnn_type != 'Small':
                self.cnn_type = 'Large'
            self.model = MobileNet_feat(self.cnn_type, True,
                                        1000)  # Large, Small

        elif self.model_type == LightCNN.ShuffleNet.value:  # use ShuffleNet
            if cnn_type == 'x0_5':  # V2_x0.5
                self.model = models.shufflenet_v2_x0_5(pretrained=True)
            else:  # V2_x1.0
                self.cnn_type = 'x1_0'
                self.model = models.shufflenet_v2_x1_0(pretrained=True)
            print('use ShuffleV2', self.cnn_type)

        elif self.model_type == LightCNN.MnasNet.value:  # use MnasNet
            if cnn_type == '0_5':  # MnasNet_0_5
                self.model = models.mnasnet0_5(pretrained=True)
            else:  # MnasNet_1_0
                self.cnn_type = '1_0'
                self.model = models.mnasnet1_0(pretrained=True)
            self.sel_feat_layer = {6, 8, 10, 16}  # conv1_3, conv2, conv4, cam
            print('use MnasNet', self.cnn_type)

        self.model.eval()
        # using Grad-CAM with softmax weight (FC)
        params = list(self.model.parameters())
        self.weight_softmax = np.squeeze(params[-2].data.numpy())

        if use_gpu:
            print('use cuda model')
            self.model = self.model.cuda()
        if self.model_type == LightCNN.SqueezeNet.value:
            self.features = nn.ModuleList(list(self.model.features)).eval()
        elif self.model_type == LightCNN.MnasNet.value:
            self.features = nn.ModuleList(list(self.model.layers)).eval()

        # test feature
        if self.use_layer == 0:  # run combine cnn_features
            self.use_layer = -4
            print('test linear combined cnn_features')
        elif self.use_layer > 4:  # run combine features with grad-CAM
            print('test combined cnn_features with grad-CAM')
        else:  # test each conv layers
            print('test single conv layer', self.use_layer)
logging.info("VERSION %s" % pytorch_metric_learning.__version__)

##############################
########## Training ##########
##############################

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# In this example, we'll take multiple trunks and embedders,
# and encapsulate them into a single trunk and embedder model.
# Note that CascadedEmbeddings does not necessarily require a complicated setup like this.
# CascadedEmbeddings just assumes that the output of your embedder
# should be partitioned into different sections, as specified by the init argument
# "embedding_sizes".
trunk1 = models.shufflenet_v2_x0_5(pretrained=True)
trunk2 = models.shufflenet_v2_x1_0(pretrained=True)
trunk3 = models.resnet18(pretrained=True)
all_trunks = [trunk1, trunk2, trunk3]
trunk_output_sizes = []

for T in all_trunks:
    trunk_output_sizes.append(T.fc.in_features)
    T.fc = Identity()

trunk = ListOfModels(all_trunks)
trunk = torch.nn.DataParallel(trunk.to(device))

# Set the embedders. Each embedder takes a corresponding trunk model output, and outputs 64-dim embeddings.
all_embedders = []
for s in trunk_output_sizes: