Пример #1
0
def make_transform(sz_resize=256,
                   sz_crop=227,
                   mean=None,
                   std=None,
                   rgb_to_bgr=True,
                   is_train=True,
                   intensity_scale=None,
                   rotate=0,
                   jitter=0,
                   hue=0):
    if std is None:
        std = [1, 1, 1]
    if mean is None:
        mean = [104, 117, 128]
    return transforms.Compose([
        RGBToBGR() if rgb_to_bgr else Identity(),
        transforms.RandomRotation(rotate) if is_train else Identity(),
        transforms.RandomResizedCrop(sz_crop) if is_train else Identity(),
        transforms.Resize(sz_resize) if not is_train else Identity(),
        transforms.CenterCrop(sz_crop) if not is_train else Identity(),
        transforms.RandomHorizontalFlip() if is_train else Identity(),
        #transforms.ColorJitter(brightness=jitter, contrast=jitter, saturation=jitter, hue=hue) if is_train else Identity(),

        #### New Added ####
        transforms.RandomPerspective() if is_train else Identity(),
        transforms.RandomEqualize() if is_train else Identity(),
        transforms.RandomVerticalFlip() if is_train else Identity(),
        transforms.RandomAdjustSharpness(
            sharpness_factor=2) if is_train else Identity(),
        transforms.RandomAutocontrast() if is_train else Identity(),
        transforms.RandomErasing() if is_train else Identity(),
        transforms.RandomAffine(degrees=(-60, 60),
                                translate=(0.1, 0.3),
                                scale=(0.5, 0.75)) if is_train else Identity(),
        #### New Added ####
        transforms.ToTensor(),
        ScaleIntensities(
            *intensity_scale) if intensity_scale is not None else Identity(),
        transforms.Normalize(
            mean=mean,
            std=std,
        )
    ])
# RandomAutocontrast
# ~~~~~~~~~~~~~~~~~~
# The :class:`~torchvision.transforms.RandomAutocontrast` transform
# (see also :func:`~torchvision.transforms.functional.autocontrast`)
# randomly applies autocontrast to the given image.
autocontraster = T.RandomAutocontrast()
autocontrasted_imgs = [autocontraster(orig_img) for _ in range(4)]
plot(autocontrasted_imgs)

####################################
# RandomEqualize
# ~~~~~~~~~~~~~~
# The :class:`~torchvision.transforms.RandomEqualize` transform
# (see also :func:`~torchvision.transforms.functional.equalize`)
# randomly equalizes the histogram of the given image.
equalizer = T.RandomEqualize()
equalized_imgs = [equalizer(orig_img) for _ in range(4)]
plot(equalized_imgs)

####################################
# AutoAugment
# ~~~~~~~~~~~
# The :class:`~torchvision.transforms.AutoAugment` transform
# automatically augments data based on a given auto-augmentation policy.
# See :class:`~torchvision.transforms.AutoAugmentPolicy` for the available policies.
policies = [T.AutoAugmentPolicy.CIFAR10, T.AutoAugmentPolicy.IMAGENET, T.AutoAugmentPolicy.SVHN]
augmenters = [T.AutoAugment(policy) for policy in policies]
imgs = [
    [augmenter(orig_img) for _ in range(4)]
    for augmenter in augmenters
]
Пример #3
0
from matplotlib.image import AxesImage

from hearth.vision.datasets import RGBImageDataset
from hearth.vision.transforms import RandomFlipOrient

_ids = [str(uuid.uuid4()) for i in range(100)]

_augmentations = T.RandomApply(
    [
        T.RandomHorizontalFlip(p=0.5),
        RandomFlipOrient(0.5),
        T.ColorJitter(brightness=0.1, hue=0.1),
        T.RandomAdjustSharpness(sharpness_factor=2),
        T.RandomAutocontrast(),
        T.RandomEqualize(),
    ],
    p=0.8,
)


@pytest.fixture(scope='module')
def image_dir(tmpdir_factory):
    d = tmpdir_factory.mktemp('images')
    dirname = str(d)

    # compute and save 100 random images of random sizes
    for _id in _ids:
        w = random.randint(32, 512)
        h = random.randint(32, 512)
        img = torch.rand(3, w, h)
Пример #4
0
def data_augmentation(ToTensor=False,
                      Resize=None,
                      Contrast=None,
                      Equalize=None,
                      HFlip=None,
                      Invert=None,
                      VFlip=None,
                      Rotation=None,
                      Grayscale=None,
                      Perspective=None,
                      Erasing=None,
                      Crop=None):
    '''
    DataAgumentation 2021/03/23 by Mr.w
    -------------------------------------------------------------
    ToTensor : False/True , 注意转为Tensor,通道会放在第一维
    Resize : tuple-->(500,500)
    Contrast : 0-1 -->图像被自动对比度的可能
    Equalize : 0-1 -->图像均衡可能性
    HFlip : 0-1 --> 图像水平翻转
    Invert : 0-1--> 随机翻转
    VFlip : 0-1 --> 图像垂直翻转
    Rotation : 0-360 --> 随机旋转度数范围, as : 90 , [-90,90]
    Grayscale : 0-1 --> 随机转换为灰度图像
    Perspective : 0-1 --> 随机扭曲图像
    Erasing : 0-1 --> 随机擦除
    Crop : tuple --> (500,500)
    -------------------------------------------------------------
    return : transforms.Compose(train_transform) --> 方法汇总
    '''
    #列表导入Compose
    train_transform = []
    if ToTensor == True:
        trans_totensor = transforms.ToTensor()
        train_transform.append(trans_totensor)

    if Resize != None:
        trans_Rsize = transforms.Resize(Resize)  # Resize=(500,500)
        train_transform.append(trans_Rsize)
    if Contrast != None:
        trans_Rcontrast = transforms.RandomAutocontrast(p=Contrast)
        train_transform.append(trans_Rcontrast)
    if Equalize != None:
        trans_REqualize = transforms.RandomEqualize(p=Equalize)
        train_transform.append(trans_REqualize)
    if HFlip != None:
        train_transform.append(transforms.RandomHorizontalFlip(p=HFlip))
    if Invert != None:
        train_transform.append(transforms.RandomInvert(p=Invert))
    if VFlip != None:
        train_transform.append(transforms.RandomVerticalFlip(p=VFlip))
    if Rotation != None:
        train_transform.append(
            transforms.RandomRotation(Rotation,
                                      expand=False,
                                      center=None,
                                      fill=0,
                                      resample=None))
    if Grayscale != None:
        train_transform.append(transforms.RandomGrayscale(p=Grayscale))
    if Perspective != None:
        train_transform.append(
            transforms.RandomPerspective(distortion_scale=0.5,
                                         p=Perspective,
                                         fill=0))
    if Erasing != None:
        train_transform.append(
            transforms.RandomErasing(p=Erasing,
                                     scale=(0.02, 0.33),
                                     ratio=(0.3, 3.3),
                                     value=0,
                                     inplace=False))
    if Crop != None:
        train_transform.append(
            transforms.RandomCrop(Crop,
                                  padding=None,
                                  pad_if_needed=False,
                                  fill=0,
                                  padding_mode='constant'))
    return transforms.Compose(train_transform)