def transform(self, transform): if isinstance(transform, collections.abc.MutableSequence): transform = torchvision.Compose(transform) self._transform = transform
self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count 8. Image Dataset Loader: torchvision.datasets.ImageFolder(root, transform=None, target_transform=None, loader=<function default_loader>) >>> import torchvision.datasets as datasets >>> import torchvision as transforms >>> transform = transforms.Compose([ transforms.Resize(args.image_size), transforms.CenterCrop(args.image_size), transforms.ToTensor(), transforms.Lambda(lambda x: x.mul(255)) ]) >>> dataset = datasets.ImageFolder(dataset_path, transform) # A generic data loader where the images are arranged in this way: # root/dog/xxx.png # root/dog/xxy.png # root/dog/xxz.png # root/cat/123.png # root/cat/nsdf3.png # root/cat/asd932_.png