Пример #1
5
 def test_no_points(self):
     try:
         t = TPS()
         t.transform(0, 0)
     except TPSError:
         pass
     else:
         assert False
def build_model(input_dim, classes_per_level):
    model = torch.nn.Sequential(torch.nn.Linear(input_dim, 20, bias=True),
                                torch.nn.ReLU(),
                                torch.nn.Linear(20, 20, bias=True),
                                torch.nn.ReLU(),
                                torch.nn.Linear(20, 20, bias=True),
                                torch.nn.ReLU(),
                                torch.nn.Linear(20, 20, bias=True),
                                torch.nn.ReLU(), TPS(20, classes_per_level))
    return model
Пример #3
0
def tps_warp(width, height, ctlpts, stdev):
    npts = len(ctlpts['_x'][0])
    tps_pts = []
    for i in range(npts):
        for j in range(npts):
            _varx = int(random.random() * width * stdev)
            _vary = int(random.random() * height * stdev)
            tps_pts.append(
                (ctlpts['_x'][i][j], ctlpts['_y'][i][j], _varx, _vary))

    t = TPS(tps_pts)

    _wfx = np.zeros((width, height), dtype='float32')
    _wfy = np.zeros((width, height), dtype='float32')
    for w in range(width):
        for h in range(height):
            _wfx[w][h] = t.transform(w, h)[0]
            _wfy[w][h] = t.transform(w, h)[1]
    warpfield = {'_wfx': _wfx, '_wfy': _wfy}

    return warpfield
Пример #4
0
 def test_init_from_list(self):
     t = TPS([(0, 0, 50, 50), (10, 10, 100, 100)])
     self.assertEquals(t.transform(4, 5), (72.5, 72.5))
     t.add(0, 10, 70, 100)
     self.assertEquals(t.transform(4, 5), (72.0, 75.0))
Пример #5
0
def tps(firefox, firefox_log, monkeypatch, pytestconfig, tps_log, tps_profile):
    yield TPS(firefox, firefox_log, tps_log, tps_profile)
Пример #6
0
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

#   http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

import numpy
from scipy.misc import imsave

from tps import TPS

# Quick test that the thin splate spline class works...

# Build a model - extrema of a sine curve...
x = numpy.array([0.0, 31.0, 63.0, 95.0, 127.0])
y = numpy.array([16.0, 48.0, 16.0, 48.0, 16.0])

model = TPS(1)
model.learn(x[:, None], y)

# Sample and create an image...
sx = numpy.arange(127)
sy = model(sx[:, None]).astype(numpy.int32)

image = numpy.zeros((64, 128), dtype=numpy.float32)
image[sy, sx] = 1.0
image[y.astype(numpy.int32), x.astype(numpy.int32)] = 2.0

# Save image out...
imsave('test_tps.png', image)
Пример #7
0
 def inv_gcp_transformer(self):
     if self._inv_gcp_transformer is None:
         points = [gcp['ground'] + gcp['pixel'] for gcp in self.gcps]
         self._inv_gcp_transformer = TPS(points)
     return self._inv_gcp_transformer
Пример #8
0
import numpy
from scipy.misc import imsave

from tps import TPS



# Quick test that the thin splate spline class works...



# Build a model - extrema of a sine curve...
x = numpy.array([0.0, 31.0, 63.0, 95.0, 127.0])
y = numpy.array([16.0, 48.0, 16.0, 48.0, 16.0])

model = TPS(1)
model.learn(x[:,None], y)



# Sample and create an image...
sx = numpy.arange(127)
sy = model(sx[:,None]).astype(numpy.int32)

image = numpy.zeros((64, 128), dtype=numpy.float32)
image[sy,sx] = 1.0
image[y.astype(numpy.int32), x.astype(numpy.int32)] = 2.0



# Save image out...
Пример #9
-2
 def test_simple(self):
     t = TPS()
     t.add(0, 0, 50, 50)
     t.add(10, 10, 100, 100)
     self.assertEquals(t.transform(4, 5), (72.5, 72.5))
     t.add(0, 10, 70, 100)
     self.assertEquals(t.transform(4, 5), (72.0, 75.0))