def main(argv): try: dataset_file = argv[1] except IndexError: print('Usage: %s DATASET_FILE' % argv[0], file=sys.stderr) return 1 instances = parsing.parse_dataset_file(dataset_file) dataset = Dataset(instances, normalize=True) structures = ([dataset.num_inputs()] + hidden + [dataset.num_outputs()] for hidden in HIDDEN_LAYERS) for structure in structures: for lambda_ in LAMBDAS: network = NeuralNetwork(lambda_, structure) results = cross_validation(network, dataset, NUM_FOLDS, **PARAMS) save_results(RESULTS_DIR, results)
def main(argv): try: dataset_file = argv[1] except IndexError: print('Usage: %s DATASET_FILE' % argv[0], file=sys.stderr) return 1 instances = parsing.parse_dataset_file(dataset_file) dataset = Dataset(instances, normalize=True) n_inputs = dataset.num_inputs() n_outputs = dataset.num_outputs() structures = ([n_inputs] + hidden_layers + [n_outputs] for hidden_layers in hidden_layer_variations( NUMS_HIDDEN_LAYERS, NUMS_NEURONS_PER_LAYER)) for network in network_variations(LAMBDAS, structures): results = cross_validation(network, dataset, NUM_FOLDS, **PARAMS) save_results(RESULTS_DIR, results)