Пример #1
0
def alignTolerances(num,azwidth=60.,axwidth=60.,f=None,catalign=np.zeros(6),\
                    returnrays=False):
    """
    Set up perfect beam and insert CAT grating
    Mess with alignment and measure spot shift at focus
    """
    #Set up converging beam
    rays = sources.convergingbeam2(12e3,-azwidth/2.,azwidth/2.,\
                                   -axwidth/2.,axwidth/2.,num,0.)
    tran.transform(rays, 0, 0, 0, np.pi, 0, 0)
    tran.transform(rays, 0, 0, 12e3, 0, 0, 0)

    #Place CAT grating
    tran.transform(rays, *catalign)
    surf.flat(rays)
    tran.grat(rays, 200., 8, 1.)
    tran.itransform(rays, *catalign)

    #Go to focus
    if f is not None:
        try:
            tran.transform(rays, 0, 0, f, 0, 0, 0)
            surf.flat(rays)
        except:
            pdb.set_trace()

    cx, cy = anal.centroid(rays)

    if returnrays is True:
        return rays

    return cx, cy
Пример #2
0
def placeWolterPair(rays, misalign=np.zeros(6)):
    """
    Place the X-ray test mirror pair in the beam path.
    Assume rays are at XY plane with -z mean direction
    Nominal position of intersection plane is 1.5 m
    past chamber entrance with mirror optical axis
    coincident with chamber optical axis.
    Can supply misalignment about X=0,Y=0 in intersection plane.
    """
    #Go to nominal intersection plane
    tran.transform(rays, 0, 0, -1500., 0, 0, 0)
    #Apply misalignments
    tran.transform(rays, *misalign)
    #Go to focus and place primary
    tran.transform(rays, 0, 0, -8400, 0, 0, 0)
    pdb.set_trace()
    surf.wolterprimary(rays, 220., 8400.)
    tran.reflect(rays)
    pdb.set_trace()
    #Vignette rays not landing in active mirror area
    indz = np.logical_and(rays[3] > 8426., rays[3] < 8526.)
    ind = np.logical_and(np.abs(rays[2]) < 50., indz)
    rays = tran.vignette(rays, ind=ind)
    #Place secondary
    pdb.set_trace()
    surf.woltersecondary(rays, 220., 8400.)
    tran.reflect(rays)
    #Vignette rays not landing in active mirror area
    indz = np.logical_and(rays[3] > 8276., rays[3] < 8376.)
    ind = np.logical_and(np.abs(rays[2]) < 50., indz)
    rays = tran.vignette(rays, ind=ind)
    #Go back up to nominal intersection plane
    tran.transform(rays, 0, 0, 8400, 0, 0, 0)
    tran.itransform(rays, *misalign)
    return rays
Пример #3
0
def fullShellPair(ang=2 * np.pi, secalign=[0, 0, 0, 0, 0, 0]):
    """
    Trace a full shell optic with misalignments of the secondary
    with respect to primary. Allow azimuthal extent to be a variable.
    """
    #Set up ray bundle
    rays = sources.subannulus(220., 220.6, ang, 100000, zhat=-1.)
    tran.transform(rays, 0, 0, -8400., 0, 0, 0)
    theta = np.arctan2(rays[2], rays[1])

    #Trace through optics
    surf.wolterprimary(rays, 220., 8400.)
    tran.reflect(rays)
    tran.transform(rays, 0, 0, 8400., 0, 0, 0)
    tran.transform(rays, *secalign)
    tran.transform(rays, 0, 0, -8400., 0, 0, 0)
    surf.woltersecondary(rays, 220., 8400.)
    tran.reflect(rays)
    tran.transform(rays, 0, 0, 8400., 0, 0, 0)
    tran.itransform(rays, *secalign)

    #Go to focus
    tran.transform(rays, 0, 0, -8400., 0, 0, 0)
    surf.flat(rays)

    #Plot misalignment curves
    ##    plt.plot(theta,rays[1],'.')
    ##    plt.plot(theta,rays[2],'.')
    plt.plot(rays[1], rays[2], '.')

    return rays, theta
Пример #4
0
def traceThroughPrimary(rays,mask,primalign=np.zeros(6),\
                        detalign=np.zeros(6),primCoeffs=None,cenSig=0.):
    """
    Trace rays through the primary mirror and then down to a focus.
    Need to simulate an initial misalignment and then applying
    an optimization algorithm to align primary to beam.
    Merit function should include the random error in spot centroiding
    primCoeffs is a list of coefficients, axial orders, and azimuthal orders
    Use global coordinate systems to determine sign conventions
    """
    #Move to primary reference frame - rays 200 mm above node
    tran.transform(rays, 0, 0, -200., 0, 0, 0)
    glo = [tran.tr.identity_matrix()] * 4
    #Move to mirror tangent point and apply misalignment
    tran.transform(rays,
                   conic.primrad(8450., 220., 8400.),
                   0,
                   50,
                   0,
                   0,
                   0,
                   coords=glo)
    tran.transform(rays, 0, 0, 0, *primalign[3:], coords=glo)
    tran.itransform(rays,
                    conic.primrad(8450., 220., 8400.),
                    0,
                    50,
                    0,
                    0,
                    0,
                    coords=glo)
    tran.transform(rays, 0, 0, -8400., 0, 0, 0, coords=glo)
    #Trace to Wolter surface
    if primCoeffs is None:
        surf.wolterprimary(rays, 220., 8400.)
    else:
        surf.primaryLL(rays,220.,8400.,8500.,8400.,100./220.,\
                       *primCoeffs)
    rays = tran.applyT(rays, glo, inverse=True)
    #Rays are now at primary in global coordinate system
    #(origin on optical axis and at nominal node height)
    #Now reflect and trace down to the detector
    tran.reflect(rays)
    tran.transform(rays, 0, 0, -conic.primfocus(220., 8400.), 0, 0, 0)
    #Apply detector misalignment
    tran.transform(rays, *detalign)
    surf.flat(rays)
    #Pick out spot centroids
    cen = [anal.centroid(rays, weights=mask == i) for i in range(mask[-1] + 1)]
    cen = np.transpose(np.array(cen))
    #Add centroiding error
    if cenSig > 0:
        cen = cen + np.random.normal(scale=cenSig, size=np.shape(cen))

    return cen
Пример #5
0
def mirrorPair(N,srcdist=89.61e3+1.5e3,primalign=np.zeros(6),\
               secalign=np.zeros(6),rrays=False,f=None,\
               plist=[[0],[0],[0]],hlist=[[0],[0],[0]]):
    """
    SLF finite source trace
    """
    #Establish subannulus of rays
    rays = sources.subannulus(220., 221., 100. / 220., N, zhat=-1.)
    #Transform to node position
    tran.transform(rays, 220, 0, 0, 0, 0, 0)
    #Set up finite source distance
    raydist = sqrt(srcdist**2 + rays[1]**2 + rays[2]**2)
    rays[4] = rays[1] / raydist
    rays[5] = rays[2] / raydist
    rays[6] = -sqrt(1. - rays[4]**2 - rays[5]**2)

    #Place mirror pair
    coords = [tran.tr.identity_matrix()] * 4
    tran.transform(rays,-220+conic.primrad(8450.,220.,8400.),0,50.,0,0,0,\
                   coords=coords)
    tran.transform(rays, *primalign, coords=coords)
    tran.transform(rays,-conic.primrad(8450.,220.,8400.),0,-8450.,0,0,0,\
                   coords=coords)
    ##    surf.wolterprimary(rays,220.,8400.)
    surf.primaryLL(rays, 220., 8400., 8500., 8400., 100. / 220, *plist)
    rays = tran.vignette(rays,ind=np.logical_and(rays[3]<8500.,\
                                                 rays[3]>8400.))
    tran.reflect(rays)
    #Place secondary in primary's reference frame
    tran.transform(rays,conic.secrad(8350.,220.,8400.),0,8350.,0,0,0,\
                   coords=coords)
    tran.transform(rays, *secalign, coords=coords)
    tran.itransform(rays,conic.secrad(8350.,220.,8400.),0,8350.,0,0,0,\
                   coords=coords)
    ##    surf.woltersecondary(rays,220.,8400.)
    surf.secondaryLL(rays, 220., 8400., 1., 8400., 8300., 100. / 220, *hlist)
    rays = tran.vignette(rays,ind=np.logical_and(rays[3]<8400.,\
                                                 rays[3]>8300.))
    tran.reflect(rays)

    #Go back to nominal node reference frame and down to focus
    rays = tran.applyT(rays, coords, inverse=True)

    if f is None:
        f = -surf.focusI(rays)
        print f
    else:
        tran.transform(rays, 0, 0, -f, 0, 0, 0)
        surf.flat(rays)

    if rrays is True:
        return rays

    return anal.hpd(rays)/f * 180/np.pi * 60.**2, \
           airnp.mean(rays[1]), np.mean(rays[2])
Пример #6
0
def singleOptic2(n,misalign=np.zeros(6),srcdist=89.61e3+1.5e3,az=100.,\
                 returnRays=False,f=None,\
                 plist=[[0],[0],[0]],\
                 ax=100.):
    """Alternative SLF finite source trace"""
    #Establish subannulus of rays
    r0 = conic.primrad(8426., 220., 8400.)
    r1 = conic.primrad(8426. + ax, 220., 8400.)
    rays = sources.subannulus(r0, r1, az / 220., n, zhat=-1.)
    #Transform to node position
    tran.transform(rays, 220, 0, 0, 0, 0, 0)
    #Set up finite source distance
    raydist = sqrt(srcdist**2 + rays[1]**2 + rays[2]**2)
    l = rays[1] / raydist
    m = rays[2] / raydist
    n = -sqrt(1. - l**2 - m**2)
    rays = [
        raydist, rays[1], rays[2], rays[3], l, m, n, rays[7], rays[8], rays[9]
    ]
    #Align perfectly to beam
    tran.steerX(rays)
    #Apply misalignment
    tran.transform(rays, *misalign)
    #Place mirror
    tran.transform(rays, -220., 0, -8400., 0, 0, 0)
    ##    surf.wolterprimarynode(rays,220,8400.)
    surf.primaryLL(rays, 220., 8400., 8426. + ax, 8426., az / 220., *plist)
    rays = tran.vignette(rays,ind=np.logical_and(rays[3]<8400.+ax,\
                                                 rays[3]>8400.))
    tran.itransform(rays, -220., 0., -8400., 0, 0, 0)
    #Vignette rays not landing in active mirror area
    ind = np.logical_and(rays[3] > 26., rays[3] < (26. + ax))
    ##    ind = np.logical_and(np.abs(rays[2])<az/2.,indz)
    rays = tran.vignette(rays, ind=ind)
    #Reverse misalignment
    tran.itransform(rays, *misalign)
    #Reflect and go to surface
    tran.reflect(rays)
    if f is None:
        f = surf.focusI(rays)
    else:
        tran.transform(rays, 0, 0, f, 0, 0, 0)
        surf.flat(rays)
    #Get centroid
    cx, cy = anal.centroid(rays)

    if returnRays is True:
        return rays

    return anal.hpd(rays) / abs(f) * 180 / pi * 60**2, f, cx
Пример #7
0
def tracePrimary(primCoeffs=None, primalign=np.zeros(6)):
    """
    Trace rays from focus to primary, off retroreflector,
    then back to focus. Return spot centroids.
    """
    #Set up source
    primfoc = conic.primfocus(220., 8400.)
    r1 = conic.primrad(8500., 220., 8400.)
    rays = sources.subannulus(220., r1, 100. / 220, 100000, zhat=1.)
    tran.pointTo(rays, 0., 0., -primfoc, reverse=1.)
    theta = np.arctan2(rays[2], rays[1])

    #Trace to primary
    tran.transform(rays, *primalign)
    tran.transform(rays, 0., 0, -8400., 0, 0, 0)
    if primCoeffs is None:
        surf.wolterprimary(rays, 220., 8400.)
    else:
        surf.primaryLL(rays,220.,8400.,8500.,8400.,100./220.,\
                       *primCoeffs)
    tran.transform(rays, 0, 0, 8400., 0, 0, 0)
    tran.itransform(rays, *primalign)
    tran.reflect(rays)

    #Reflect and come back
    tran.transform(rays, 0, 0, 400., 0, 0, 0)
    surf.flat(rays)
    tran.reflect(rays)
    tran.transform(rays, 0, 0, -400., 0, 0, 0)

    #Trace to primary
    tran.transform(rays, *primalign)
    tran.transform(rays, 0., 0, -8400., 0, 0, 0)
    if primCoeffs is None:
        surf.wolterprimary(rays, 220., 8400.)
    else:
        surf.primaryLL(rays,220.,8400.,8500.,8400.,100./220.,\
                       *primCoeffs)
    ind = np.logical_and(rays[3] > 8400., rays[3] < 8500.)
    tran.vignette(rays, ind=ind)
    tran.transform(rays, 0, 0, 8400., 0, 0, 0)
    tran.itransform(rays, *primalign)
    tran.reflect(rays)

    #Go to primary focus
    tran.transform(rays, 0, 0, -primfoc, 0, 0, 0)
    surf.flat(rays)

    return rays, theta
Пример #8
0
def singleEllipse(n,misalign=np.zeros(6),srcdist=89.61e3+1.5e3,az=100.,\
                 returnRays=False,f=None,\
                 plist=[[0],[0],[0]],\
                 ax=100.,psi=psiE):
    """Alternative SLF finite source trace"""
    #Establish subannulus of rays
    r0 = conic.primrad(8426., 220., 8400.)
    r1 = conic.primrad(8426. + ax, 220., 8400.)
    rays = sources.subannulus(r0, r1, az / 220., n, zhat=-1.)
    tran.pointTo(rays, 0., 0., srcdist, reverse=1.)
    #Transform to node position
    tran.transform(rays, 220, 0, 0, 0, 0, 0)
    #Apply misalignment
    tran.transform(rays, *misalign)
    #Place mirror
    tran.transform(rays, -220., 0, -8400., 0, 0, 0)
    ##    surf.wolterprimarynode(rays,220,8400.)
    surf.ellipsoidPrimaryLL(rays,220.,8400.,srcdist,psi,8426.+ax,8426.,\
                            az/220.,*plist)
    tran.itransform(rays, -220., 0., -8400., 0, 0, 0)
    #Vignette rays not landing in active mirror area
    ind = np.logical_and(rays[3] > 26., rays[3] < (26. + ax))
    ##    ind = np.logical_and(np.abs(rays[2])<az/2.,indz)
    rays = tran.vignette(rays, ind=ind)
    #Reverse misalignment
    tran.itransform(rays, *misalign)
    #Reflect and go to surface
    tran.reflect(rays)
    if f is None:
        f = surf.focusI(rays)
    else:
        tran.transform(rays, 0, 0, f, 0, 0, 0)
        surf.flat(rays)
    #Get centroid
    cx, cy = anal.centroid(rays)

    if returnRays is True:
        return rays

    return anal.hpd(rays) / abs(f) * 180 / pi * 60**2  #,f,cx
Пример #9
0
def traceToTestOptic1m(N, app=75., coloffset=0., cghalign=np.zeros(6)):
    """Trace a set of rays from the point source to the nominal
    test optic location
    Return the rays at the plane tangent to the nominal source position.
    """
    #Set up source
    div = app / 1935.033
    rays = sources.pointsource(div, N)
    #Trace through collimator
    tran.transform(rays, 0, 0, 1935.033 + coloffset, 0, 0, 0)
    surf.flat(rays, nr=1.)
    lenses.collimator6(rays)
    ##    tran.transform(rays,0,0,-coloffset,0,0,0)
    #Trace to CGH
    tran.transform(rays, 0, 0, 100., 0, 0, 0)
    #Apply proper CGH misalignment
    tran.transform(rays, 0, 0, 0, -10. * pi / 180, 0, 0)
    #Apply CGH misalignment
    tran.transform(rays, *cghalign)
    #Trace through CGH
    surf.flat(rays, nr=1.)
    tran.refract(rays, 1., nsil)
    tran.transform(rays, 0, 0, 6.35, 0, 0, 0)
    surf.flat(rays, nr=nsil)
    tran.refract(rays, nsil, 1.)
    surf.zernphase(rays, -cgh1m, 80., 632.82e-6)
    #Reverse CGH misalignment
    tran.itransform(rays, *cghalign)
    #Go to line focus
    line = surf.focusY(rays, nr=1.)
    #Go to test optic
    tran.transform(rays, 0, 0, 1000., 0, 0, 0)
    surf.flat(rays, nr=1.)
    #Go to 1m cylindrical radius of curvature
    px, py = anal.measurePower(rays, 200, 200)
    tran.transform(rays, 0, 0, 1000 + py, 0, 0, 0)
    surf.flat(rays, nr=1.)

    return rays, line
Пример #10
0
def traceToTestOptic220(N, app=75.):
    """Trace a set of rays from the point source to the nominal
    test optic location
    Return the rays at the plane tangent to the nominal source position.
    """
    #Set up source
    div = app / 1935.033
    rays = sources.pointsource(div, N)
    #Trace through collimator
    tran.transform(rays, 0, 0, 1935.033, 0, 0, 0)
    surf.flat(rays, nr=1.)
    lenses.collimator6(rays)
    #Trace to CGH
    tran.transform(rays, 0, 0, 100., 0, 0, 0)
    #Apply proper CGH misalignment
    pdb.set_trace()
    tran.transform(rays, 0, 0, 0, -1. * pi / 180, 0, 0)
    #Trace through CGH
    surf.flat(rays, nr=1.)
    tran.refract(rays, 1., nsil)
    tran.transform(rays, 0, 0, 6.35, 0, 0, 0)
    surf.flat(rays, nr=nsil)
    tran.refract(rays, nsil, 1.)
    surf.zernphase(rays, cghcoeff, 80., 632.82e-6)
    #Reverse CGH misalignment
    tran.itransform(rays, 0, 0, 0, -1. * pi / 180, 0, 0)
    #Go to line focus
    tran.transform(rays, 0, 0, 0, 0, 1. * pi / 180, 0)
    surf.flat(rays, nr=1.)
    tran.transform(rays, 0, 0, line, 0, 0, 0)
    surf.flat(rays, nr=1.)
    #Go to test optic
    tran.transform(rays, 0, 0, 220., 0, 0, 0)
    surf.flat(rays, nr=1.)
    #Rotate reference frame so rays impinge toward -z
    tran.transform(rays, 0, 0, 0, 0, pi, 0)

    return rays
Пример #11
0
def alignTrace(inc,impact,grating,detector,order=0):
    """Traces UV laser rays to grating. Beam impact misalignment
    is handled with a single coordinate transformations right after
    source definition. Grating orientation is handled with
    symmetric coordinate transformations.
    inc - nominal beam glancing angle, must be less than
        50.39 deg for 262 nm light
    impact - 6 element array giving beam impact transform
    grating - 6 element array giving grating misalignment
    """
    #Set up source with single ray, diffraction plane
    #is XZ, glancing angle from XY plane, ray starts out
    #pointing +x and -z
    rays = sources.pointsource(0.,1)
    tran.transform(rays,0,0,0,0,-np.pi/2-inc,0)
    #Perform beam impact misalignment transform, rotation first
    tran.transform(rays,*np.concatenate(((0,0,0),impact[3:])))
    tran.transform(rays,*np.concatenate((impact[:3],(0,0,0))))
    #Perform grating misalignment
    tran.transform(rays,*grating)
    #Linear grating
    surf.flat(rays)
    tran.reflect(rays)
    tran.grat(rays,160.,order,262.)
    #Reverse misalignment transformation
    tran.itransform(rays,*grating)
    #Go to detector depending on order
    if order is not 0:
        tran.transform(rays,-200.,0,0,0,0,0)
    else:
        tran.transform(rays,200.,0,0,0,0,0)
    #Trace to detector
    tran.transform(rays,0,0,0,0,-np.pi/2,0)
    tran.transform(rays,*detector)
    surf.flat(rays)
    #Return ray position
    return rays[1],rays[2]
Пример #12
0
def distortTrace(cone1,sag1,roc1,cone2,sag2,roc2,despace=0.,secondaryTilt=0.,\
                 nominal=True):
    """
    Trace rays through a Wolter mirror pair with low
    order distortions. Distortions can be applied to
    either primary or secondary or both.
    axial sag, azimuthal sag, and cone angle are included.
    
    """
    #Define ray subannulus
    r1 = surf.con.primrad(8600., 1000., 8400.)
    ang = 260. / 1000.  #arc length over radius is angular extent
    rays = sources.subannulus(1000., r1, ang, 10**3)
    tran.transform(rays, 0, 0, 0, np.pi, 0, 0)  #Point in -z
    tran.transform(rays, 0, 0, -10000, 0, 0, 0)  #Converge from above

    #Trace to primary
    surf.primaryLL(rays,1000.,8400.,8600,8400,ang,[cone1,sag1,roc1],\
                   [1,2,0],[0,0,2])
    #Vignette rays missing
    ind = np.logical_and(rays[3] < 8600., rays[3] > 8400.)
    rays = tran.vignette(rays, ind)
    numin = float(len(rays[1]))
    #Reflect
    tran.reflect(rays)

    #Apply secondary misalignment
    tran.transform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                   0)
    tran.transform(rays, 0, 0, despace, 0, secondaryTilt, 0)
    tran.itransform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                    0)
    #Trace to secondary
    surf.secondaryLL(rays,1000.,8400.,8400.,8200.,ang,[cone2,sag2,roc2],\
                     [1,2,0],[0,0,2])
    #Vignette rays missing
    ind = np.logical_and(rays[3] < 8400., rays[3] > 8200.)
    rays = tran.vignette(rays, ind)
    numout = float(len(rays[1]))
    #Reflect
    tran.reflect(rays)
    #Reverse secondary misalignment
    tran.transform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                   0)
    tran.itransform(rays, 0, 0, despace, 0, secondaryTilt, 0)
    tran.itransform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                    0)

    #Go to focus
    if nominal is True:
        surf.flat(rays)
    else:
        surf.focusI(rays)

    #Return merit function
    return rays  #anal.hpd(rays)/8400.,numout/numin
Пример #13
0
def sourceToChamber(N, misalign=np.zeros(6)):
    """
    Trace randomly sampled rays from the TruFocus X-ray source
    to the 1.22 m diameter entrance to the test chamber.
    A-B from Jeff K.'s memo is 89.61
    Use oversized sub-apertured annulus, applying translations
    """
    #Define some Wolter parameters
    r1 = conic.primrad(8600., 220., 8400.)
    dphi = 100. / 220. / 2
    #Set up subannulus
    rays = sources.subannulus(220., r1, dphi * 1.25, N)
    #Set direction cosines
    srcdist = 89.61e3 + (1.5e3 - misalign[2])
    raydist = sqrt(srcdist**2+\
                   (rays[1]-misalign[0])**2+\
                   (rays[2]-misalign[1])**2)
    l = (rays[1] - misalign[0]) / raydist
    m = (rays[2] - misalign[1]) / raydist
    n = -sqrt(1. - l**2 - m**2)
    rays = [
        rays[0], rays[1], rays[2], rays[3], l, m, n, rays[7], rays[8], rays[9]
    ]
    #Go to mirror node and apply rotational misalignment
    tran.transform(rays, 220., 0, 0, misalign[3], misalign[4], misalign[5])
    tran.transform(rays, -220., 0, 0, 0, 0, 0)
    #Place Wolter surfaces
    tran.transform(rays, 0, 0, -8400., 0, 0, 0)
    surf.wolterprimary(rays, 220., 8400.)
    tran.reflect(rays)
    #Vignette rays not landing in active mirror area
    indz = np.logical_and(rays[3] > 8426., rays[3] < 8526.)
    ind = np.logical_and(np.abs(rays[2]) < 50., indz)
    rays = tran.vignette(rays, ind=ind)
    #Place secondary
    surf.woltersecondary(rays, 220., 8400.)
    tran.reflect(rays)
    #Vignette rays not landing in active mirror area
    indz = np.logical_and(rays[3] > 8276., rays[3] < 8376.)
    ind = np.logical_and(np.abs(rays[2]) < 50., indz)
    rays = tran.vignette(rays, ind=ind)
    #Go back up to intersection plane
    tran.transform(rays, 0, 0, 8400, 0, 0, 0)
    #Reverse misalignments
    tran.itransform(rays, -220., 0, 0, 0, 0, 0)
    tran.itransform(rays, 0, 0, 0, misalign[3], misalign[4], misalign[5])
    tran.itransform(rays, 220, 0, 0, 0, 0, 0)
    #Now back in nominal intersection coordinate system
    #Go to focus
    f = -9253.3858232
    tran.transform(rays, 0, 0, f, 0, 0, 0)
    surf.flat(rays)

    return rays  #anal.hpd(rays)/abs(f)*60**2*180/pi
Пример #14
0
def pairRaytrace(secondaryTilt, despace):
    """Trace the distorted mirror pair. Assume no gap for now.
    Vignette rays that land outside active mirror areas."""
    #Define ray subannulus
    r1 = surf.con.primrad(8600., 1000., 8400.)
    ang = 260. / 1000.  #arc length over radius is angular extent
    rays = sources.subannulus(1000., r1, ang, 10**3)
    tran.transform(rays, 0, 0, 0, np.pi, 0, 0)  #Point in -z
    tran.transform(rays, 0, 0, -10000, 0, 0, 0)  #Converge from above

    #Trace to primary
    surf.primaryLL(rays, 1000., 8400., 8600, 8400, ang, res[0], res[2], res[1])
    #Vignette rays missing
    ind = np.logical_and(rays[3] < 8600., rays[3] > 8400.)
    rays = tran.vignette(rays, ind)
    numin = float(len(rays[1]))
    #Reflect
    tran.reflect(rays)
    #Bring to midplane of despaced secondary

    #Apply secondary misalignment
    tran.transform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                   0)
    tran.transform(rays, 0, 0, despace, 0, secondaryTilt, 0)
    tran.itransform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                    0)
    #Trace to secondary
    surf.secondaryLL(rays, 1000., 8400., 8400., 8200., ang, res2[0], res2[2],
                     res2[1])
    #Vignette rays missing
    ind = np.logical_and(rays[3] < 8400., rays[3] > 8200.)
    rays = tran.vignette(rays, ind)
    numout = float(len(rays[1]))
    #Reflect
    tran.reflect(rays)
    #Reverse secondary misalignment
    tran.transform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                   0)
    tran.itransform(rays, 0, 0, despace, 0, secondaryTilt, 0)
    tran.itransform(rays, surf.con.secrad(8300., 1000., 8400.), 0, 8300, 0, 0,
                    0)

    #Go to focus
    surf.focusI(rays)

    #Get centroid
    cx, cy = anal.centroid(rays)

    #Return merit function
    return anal.rmsCentroid(
        rays) / 8400. * 180 / np.pi * 60**2, numout / numin, cx, cy
Пример #15
0
def backToWFS1m(rays, cghalign=np.zeros(6)):
    """
    Trace rays from nominal test optic tangent plane back to WFS plane.
    This function can also be used with a point source to determine the
    Optimal focus positions of the field lenses.
    +z points toward CGH.
    """
    #Reverse x,z misalignments
    for i in [0, 2, 3, 5]:
        cghalign[i] = -cghalign[i]
    #Back to CGH
    tran.transform(rays, 0, 0, 1000 + line1m, 0, 0, 0)
    surf.flat(rays, nr=1.)
    #Trace back through CGH
    tran.transform(rays, *cghalign)
    surf.zernphase(rays, -cgh1m, 80., 632.82e-6)
    tran.refract(rays, 1., nsil)
    tran.transform(rays, 0, 0, 6.35, 0, 0, 0)
    surf.flat(rays, nr=nsil)
    tran.refract(rays, nsil, 1.)
    tran.itransform(rays, *cghalign)
    tran.transform(rays, 0, 0, 0, -10. * pi / 180, 0, 0)
    #Go to collimator
    tran.transform(rays, 0, 0, 100, 0, 0, 0)
    surf.flat(rays, nr=1.)
    lenses.collimator6(rays, reverse=True)
    #Go to focus
    tran.transform(rays, 0, 0, 1934.90059 - 100., 0, 0, 0)
    surf.flat(rays, nr=1.)
    #Place to AC-508-250
    lenses.AC508_250(rays, reverse=True)
    #Go to WFS location
    ##    tran.transform(rays,0,0,foc,0,0,0)
    ##    surf.flat(rays,nr=.1)
    tran.transform(rays, 0, 0, foc1m, 0, 0, 0)

    #Go to cylindrical field lens
    tran.transform(rays, 0, 0, -cylz1m, 0, 0, 0)
    surf.flat(rays, nr=1.)
    tran.transform(rays, 0, 0, 0, 0, 0, pi / 2)
    lenses.LJ1144_L2(rays, reverse=False)
    tran.itransform(rays, 0, 0, 0, 0, 0, pi / 2)
    tran.itransform(rays, 0, 0, -cylz1m, 0, 0, 0)
    #Back to WFS
    surf.flat(rays, nr=1.)

    return anal.rmsY(rays)
Пример #16
0
def backToWFS220(rays):
    """
    Trace rays from nominal test optic tangent plane back to WFS plane.
    This function can also be used with a point source to determine the
    Optimal focus positions of the field lenses.
    +z points toward CGH.
    """
    #Back to CGH
    tran.transform(rays, 0, 0, 220 + line, 0, 0, 0)
    surf.flat(rays, nr=1.)
    #Trace back through CGH
    tran.transform(rays, 0, 0, 0, 0, 1. * pi / 180, 0)
    tran.transform(rays, 0, 0, 0, 1. * pi / 180, 0, 0)
    surf.flat(rays, nr=1.)
    surf.zernphase(rays, cghcoeff, 80., 632.82e-6)
    tran.refract(rays, 1., nsil)
    tran.transform(rays, 0, 0, 6.35, 0, 0, 0)
    surf.flat(rays, nr=nsil)
    tran.refract(rays, nsil, 1.)
    tran.itransform(rays, 0, 0, 0, 1. * pi / 180, 0, 0)
    #Go to collimator
    tran.transform(rays, 0, 0, 100, 0, 0, 0)
    surf.flat(rays, nr=1.)
    lenses.collimator6(rays, reverse=True)
    #Go to focus
    tran.transform(rays, 0, 0, 1934.99719 - 100., 0, 0, 0)
    surf.flat(rays, nr=1.)
    #Place to AC-508-250
    lenses.AC508_250(rays, reverse=True)
    #Go to WFS location
    ##    tran.transform(rays,0,0,foc,0,0,0)
    ##    surf.flat(rays,nr=.1)
    tran.transform(rays, 0, 0, foc, 0, 0, 0)
    surf.flat(rays, nr=1.)

    #Go to cylindrical field lens
    tran.transform(rays, 0, 0, -cylz, 0, 0, 0)
    surf.flat(rays, nr=1.)
    tran.transform(rays, 0, 0, 0, 0, 0, pi / 2)
    lenses.LJ1516_L2(rays, reverse=False)
    tran.itransform(rays, 0, 0, 0, 0, 0, pi / 2)
    tran.itransform(rays, 0, 0, -cylz, 0, 0, 0)
    #Back to WFS
    surf.flat(rays, nr=1.)

    return anal.rmsY(rays)
Пример #17
0
def collectFocalPlaneRays(z):
    tra2 = np.dot(tr.translation_matrix([40,-100,0]),\
               tr.rotation_matrix(pi/2,[0,0,1,0]))
    rot2 = tr.rotation_matrix(pi / 2, [0, 0, 1, 0])
    tra3 = np.dot(tr.translation_matrix([1000,-1000,0]),\
               tr.rotation_matrix(-pi/2,[0,0,1,0]))
    rot3 = tr.rotation_matrix(-pi / 2, [0, 0, 1, 0])
    tra4 = np.dot(tr.translation_matrix([1020,920,0]),\
               tr.rotation_matrix(pi,[0,0,1,0]))
    rot4 = tr.rotation_matrix(pi, [0, 0, 1, 0])

    f = open(
        '/home/rallured/Dropbox/Arcus/Raytrace/FocalPlaneLayout/160412_Rays.pkl',
        'r')
    rays = pickle.load(f)
    f.close()

    rays2 = np.copy(rays)
    rays2 = [rays2[0],rays2[1],-rays2[2],rays2[3],\
             rays2[4],-rays2[5],rays2[6],\
             rays2[7],rays2[8],rays2[9]]
    rays3 = np.copy(rays)
    rays3 = [rays3[0],rays3[1],-rays3[2],rays3[3],\
             rays3[4],-rays3[5],rays3[6],\
             rays3[7],rays3[8],rays3[9]]
    rays4 = np.copy(rays)

    tran.itransform(rays2, 40, -100, 0, 0, 0, pi / 2)
    tran.itransform(rays3, 1000, 1000, 0, 0, 0, -pi / 2)
    tran.itransform(rays4, 1020, 920, 0, 0, 0, pi)

    #Plot to make sure
    plt.plot(rays[1], rays[2], '.')
    plt.plot(rays2[1], rays2[2], '.')
    plt.plot(rays3[1], rays3[2], '.')
    plt.plot(rays4[1], rays4[2], '.')

    #Transform everything up
    r = [rays, rays2, rays3, rays4]
    [tran.transform(ri, 0, 0, z, 0, 0, 0) for ri in r]
    [surf.flat(ri) for ri in r]
    plt.figure()
    [plt.plot(ri[1], ri[2], '.') for ri in r]
Пример #18
0
def perfectCyl(rays, align=np.zeros(6)):
    """
    Trace rays from perfect cylinder with potential misalignment
    Assume rays are traced to tangent plane of nominal optic position
    +z points back toward CGH
    Leave with reference frame at tangent plane of nominal surface
    """
    #Apply misalignment
    tran.transform(rays, *align)
    #Trace cylinder
    tran.transform(rays, 0, 0, 220., 0, 0, 0)
    #Get cylindrical axis in +x direction
    tran.transform(rays, 0, 0, 0, 0, 0, pi / 2)
    surf.cyl(rays, 220., nr=1.)
    tran.reflect(rays)
    tran.itransform(rays, 0, 0, 0, 0, 0, pi / 2)
    tran.itransform(rays, 0, 0, 220., 0, 0, 0)
    #Go back to nominal tangent plane
    tran.itransform(rays, *align)
    surf.flat(rays, nr=1.)

    return
Пример #19
0
def test(N,rin=700.,rout=737.,azwidth=66.,srcdist=89.61e3+1.5e3,\
         hubdist=11832.911,yaw=0.,wave=6.,order=1,\
         opgalign=[0,0,0,0,0,0],f=None,\
         rrays=False,glob=False,rcen=False,\
         groll=0.,gyaw=0.,gpitch=0.,\
         scatter=False,coordin=None,\
         radapprox=False):
    """
    Trace through the SPO module, then place the OPG module
    at its nominal position, allowing for misalignments about the
    center of the OPG module. The module tolerances can be
    investigated by a coordinate transformation around the
    OPG module placement.
    """
    #Trace through SPO module
    rays = traceSPO(N,rin=rin,rout=rout,azwidth=azwidth,srcdist=srcdist,\
                    scatter=scatter)

    #Find the nominal OPG module location using formalism
    #from Flanagan's SPIE paper
    #Go to focus, steer out X and Y, then go up a distance
    #defined using Flangan formula, this should leave you
    #at the center of the beam, therefore the center of the
    #OPG module
    if coordin is None:
        coords = [tran.tr.identity_matrix()]*4
        tran.transform(rays,0,0,0,0,-np.mean(rays[4]),0,coords=coords)
        #tran.steerX(rays,coords=coords)
        #tran.steerY(rays,coords=coords)
        tran.transform(rays,0,0,0,pi-np.mean(rays[5]),0,0,coords=coords)
        f0 = surf.focusI(rays,coords=coords)
        tran.transform(rays,np.mean(rays[1]),np.mean(rays[2]),0,0,0,0,\
                       coords=coords)
        tran.transform(rays,0,0,0,0,pi,0,coords=coords)
        tran.transform(rays,0,0,11832.911*np.cos(1.5*np.pi/180),0,0,0,coords=coords)
        tran.transform(rays,0,0,0,0,1.5*np.pi/180,0,coords=coords)
    else:
        rays = tran.applyT(rays,coordin)
        coords = np.copy(coordin)
    surf.flat(rays)
    #Now at center of central grating, with -z pointing toward hub
    tran.transform(rays,*opgalign,coords=coords)
    rays,record = traceOPG(rays,hubdist=hubdist,yaw=yaw,wave=wave,order=order,\
                           gyaw=gyaw,groll=groll,gpitch=gpitch,\
                           radapprox=radapprox)
    tran.itransform(rays,*opgalign,coords=coords)
    #Should be at same reference frame, with rays now diffracted
    if np.sum(record)==0:
        pdb.set_trace()
    rays = tran.vignette(rays,ind=record>0)
    record = record[record>0]

    #Trace to detector and determine LSF
    rays = tran.applyT(rays,coords,inverse=True)
    #surf.focusI(rays)
    if f is not None:
        try:
            tran.transform(rays,0,0,-f,0,0,0)
            surf.flat(rays)
        except:
            pdb.set_trace()

    if rcen is True:
        return anal.centroid(rays)

    if rrays is True:
        if glob is True:
            tran.transform(rays,0,0,f,0,0,0)
        return rays,record

    #Return LSF in arcseconds
    return anal.hpdY(rays)/12e3*180/pi*60**2
Пример #20
0
def ellipsoidPair(N,srcdist=89.61e3+1.5e3,primalign=np.zeros(6),\
               secalign=np.zeros(6),rrays=False,f=None,\
                  plist=[[0],[0],[0]],hlist=[[0],[0],[0]]):
    """
    Trace an ellipsoid-hyperboloid telescope in SLF geometry.
    plist is [pcoeff,pax,paz]
    """
    #Establish subannulus of rays
    r1 = conic.ellipsoidRad(srcdist, 1., 220., 8400., 8500.)
    rays = sources.subannulus(220., r1, 100. / 220., N, zhat=-1.)
    tran.pointTo(rays, 0, 0, srcdist, reverse=1.)
    ##    #Transform to node position
    ##    tran.transform(rays,220,0,0,0,0,0)
    ##    #Set up finite source distance
    ##    raydist = sqrt(srcdist**2+rays[1]**2+rays[2]**2)
    ##    rays[4] = rays[1]/raydist
    ##    rays[5] = rays[2]/raydist
    ##    rays[6] = -sqrt(1.-rays[4]**2-rays[5]**2)

    #Place mirror pair
    coords = [tran.tr.identity_matrix()] * 4
    prad = conic.ellipsoidRad(srcdist, 1., 220., 8400., 8450.)
    tran.transform(rays,prad,0,50.,0,0,0,\
                   coords=coords)
    tran.transform(rays, *primalign, coords=coords)
    tran.transform(rays,-prad,0,-8450.,0,0,0,\
                   coords=coords)
    surf.ellipsoidPrimaryLL(rays,220.,8400.,srcdist,1.,8500.,8400.,100./220,\
                            *plist)
    #Vignette any rays outside of active area
    rays = tran.vignette(rays,ind=np.logical_and(rays[3]<8500.,\
                                                 rays[3]>8400.))
    ##    surf.ellipsoidPrimary(rays,220.,8400.,srcdist,1.)
    tran.reflect(rays)
    #Place secondary in primary's reference frame
    srad = conic.ehSecRad(srcdist, 1., 220., 8400., 8350.)
    tran.transform(rays,srad,0,8350.,0,0,0,\
                   coords=coords)
    tran.transform(rays, *secalign, coords=coords)
    tran.itransform(rays,srad,0,8350.,0,0,0,\
                   coords=coords)
    ##    surf.ellipsoidSecondary(rays,220.,8400.,srcdist,1.)
    surf.ellipsoidSecondaryLL(rays,220.,8400.,srcdist,1.,8400.,8300.,100./220,\
                              *hlist)
    rays = tran.vignette(rays,ind=np.logical_and(rays[3]<8400.,\
                                                 rays[3]>8300.))
    ang = anal.grazeAngle(rays)
    tran.reflect(rays)

    #Go back to nominal node reference frame and down to focus
    rays = tran.applyT(rays, coords, inverse=True)

    if f is None:
        f = -surf.focusI(rays)
        print f
    else:
        tran.transform(rays, 0, 0, -f, 0, 0, 0)
        surf.flat(rays)

    if rrays is True:
        return rays

    return anal.hpd(rays) / f * 180 / np.pi * 60.**2
Пример #21
0
def traceOPG(rays,hubdist=11832.911,yaw=0.,order=1,wave=1.,ang=2.5/11832.911,\
             gpitch=0.,gyaw=0.,groll=0.,\
             radapprox=False):
    """
    Trace the OPG module. Probably ignore vignetting again.
    Place perfect OPG surfaces at the correct angular distance
    to make this a reasonable approximation.
    Assume reference frame is in center of module with -z
    pointing toward hub - achieved with steerX/steerY and
    rotate inc before this function call
    Create vector to keep track of which grating each ray
    diffracts from. Separate LSFs can be identified using
    this vector.
    """
    #Establish starting coordinate system
    coords = [tran.tr.identity_matrix()]*4
    #Get -x pointing to hub
    #Question whether to rotate about z to swap x and y
    tran.transform(rays,0,0,0,0,0,-pi/2,coords=coords)
    tran.transform(rays,0,0,0,pi/2,0,0,coords=coords)
    #Go to hub, then rotate to extreme grating surface
    tran.transform(rays,0,0,0,0,0,yaw,coords=coords) #possible blaze
    tran.transform(rays,0,-11832.911,0,0,0,0,coords=coords)
    tran.transform(rays,0,0,0,-ang*7,0,0,coords=coords) #minus sign ambiguity
    #Loop through gratings, tracing rays
    left = np.repeat(True,len(rays[1]))
    record = np.zeros(len(rays[1]))
    for i in range(15):
        #If no rays left, we are done
        if np.sum(left) == 0:
            continue
        #Rays with small incidence angle removed
        indg = np.abs(np.arcsin(rays[6])) > .001
        ind = np.logical_and(left,indg)
        if np.sum(ind)==0:
            tran.transform(rays,0,0,0,ang,0,0,coords=coords)
            continue
        #Trace rays to surface
        tyaw = np.random.uniform(low=-gyaw,high=gyaw)
        tpitch = np.random.uniform(low=-gpitch,high=gpitch)
        troll = np.random.uniform(low=-groll,high=groll)
        tran.transform(rays,0,11832.911,0,0,0,0,ind=ind)
        tran.transform(rays,0,0,0,tpitch,troll,tyaw,ind=ind)
        surf.flat(rays,ind=ind)
        tran.itransform(rays,0,0,0,tpitch,troll,tyaw,ind=ind)
        tran.itransform(rays,0,11832.911,0,0,0,0,ind=ind)
        #Identify relevant rays
        ind = np.logical_and(rays[2]>11832.911-96./2,rays[2]<11832.911+96./2)
        ind = np.logical_and(ind,left)
        #Remove these rays from the set that remain
        left = np.logical_and(left,np.invert(ind))
        if np.sum(ind)==0:
            tran.transform(rays,0,0,0,ang,0,0,coords=coords)
            continue
        #Record which grating these rays diffracted from
        record[ind] = i+1
        #Diffract this set of rays
        tran.reflect(rays,ind=ind)
        tran.transform(rays,0,11832.911-hubdist,0,0,0,0,coords=coords)
        
        if radapprox is False:
            tran.radgrat(rays,160./hubdist,order,wave,ind=ind)
        else:
            ind3 = np.logical_and(rays[2]<11832.911+48.,\
                                 rays[2]>11832.911+48-9.282)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,160.,order,wave,ind=ind4)

            ind3 = np.logical_and(rays[2]<11832.911+48.-9.282,\
                                 rays[2]>11832.911+48-9.282-18.564)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,159.75,order,wave,ind=ind4)

            ind3 = np.logical_and(rays[2]<11832.911+48.-9.282-18.564,\
                                 rays[2]>11832.911+48-9.282-18.564*2)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,159.5,order,wave,ind=ind4)

            ind3 = np.logical_and(rays[2]<11832.911+48.-9.282-18.564*2,\
                                 rays[2]>11832.911+48-9.282-18.564*3)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,159.25,order,wave,ind=ind4)

            ind3 = np.logical_and(rays[2]<11832.911+48.-9.282-18.564*3,\
                                 rays[2]>11832.911+48-9.282-18.564*4)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,159.,order,wave,ind=ind4)

            ind3 = np.logical_and(rays[2]<11832.911+48.-9.282-18.564*4,\
                                 rays[2]>11832.911+48-9.282-18.564*4-12.462)
            ind4 = np.logical_and(ind3,ind)
            if np.sum(ind4)>0:
                tran.grat(rays,158.75,order,wave,ind=ind4)
            #pdb.set_trace()
            
        tran.transform(rays,0,hubdist-11832.911,0,0,0,0,coords=coords)
        #Rotate to next grating
        tran.transform(rays,0,0,0,ang,0,0,coords=coords)
    #Go back to original coordinate system
    rays = tran.applyT(rays,coords,inverse=True)

    return rays,record