Пример #1
0
class Client:

    def __init__(self, config: ConfigurationFile):
        self.config = config
        self.database = Database(self.config.db_file)
        self.organizer = Organizer(self.config, self.config.db_file)
        self.downloader = Downloader(self.config.db_file, self.organizer,
                                     self.config)
        self.tracker = Tracker(self.config.db_file, self.downloader,
                               self.config.update_period)

        self.tracker.start()
        self.downloader.start()
        self.organizer.start()

    def add_tvshow(self, tvshow_id: int):
        tvshow_name = showrss.get_name(tvshow_id)
        self.database.put_tvshow(TVShow(tvshow_id, tvshow_name))

    def remove_tvshow(self, tvshow_id: int):
        self.database.remove_tvshow(tvshow_id)

    def list_tvshows(self):
        return self.database.tvshows()

    def list_episodes(self, state: EpisodeState = None):
        return self.database.episodes(state)

    def download_progress(self):
        return self.downloader.downloads()

    def exit(self):
        self.tracker.stop()
        self.downloader.stop()
def main ():

    #Introduction
    print ("This program graphically depicts the flight of a cannonball. ")
    print ()

    #Get inputs
    a = eval(input("Enter the launch angle in degrees: "))
    v = eval(input("Enter the initial velocity in meters per second: "))
    h = eval(input("Enter the initial height in meters: "))

    #Create tracker
    projectile = Projectile(a, v, h)
    win = GraphWin(200, 200)
    win.setCoords(0.0, 0.0, 25.0, 25.0)
    tracker = Tracker(win, projectile)
    time = 0.0
    while projectile.getY() >= -5:
        time += .0005
        projectile.update(time)
        tracker.update()

    #Close window
    win.getMouse()
    win.close()
Пример #3
0
def compute_gradient((model, dialog, n_data, )):
    print 'here'
    return 1
    tracker = Tracker(model)
    tracker.new_dialog()
    last_state = tracker.get_state()

    accum_loss_grad = []
    for shape in model.shapes:
        accum_loss_grad.append(np.zeros(shape, dtype=theano.config.floatX))

    total_loss = 0.0
    for act in dialog:
        act_ndx = model.acts[act]

        # Run tracker to get the new state and the true state.
        curr_state, true_state = tracker.next(act)

        # Compute the loss & gradient of the loss.
        val = [model.values[true_state[slot]] for slot in model.slots]

        total_loss += model.f_curr_slot_loss(curr_state, val)

        for param_loss_grad, accum in zip(model.loss_grads, accum_loss_grad):
            accum += 1.0 / n_data * param_loss_grad(last_state, act_ndx, val)

        last_state = curr_state

    return accum_loss_grad, total_loss
Пример #4
0
class ObjectTracker(OpenCVVideoFilter):
    __gstmetadata__ = (
        "Object tracker plugin",
        "newelement",
        "Description",
        "Contact")

    def __init__(self):
        super(ObjectTracker, self).__init__()
        self.tracker = Tracker([self.h, self.w])
        self.api = GstVideo.VideoRegionOfInterestMeta.get_info()

    def do_transform(self, b, outbuffer):
        img = self.gst_to_cv(b)
        ts = time.time()
        self.tracker.track(ts, img)
        tag_list = Gst.TagList.new_empty()
	
        for t in self.tracker.to_log():
            blob = t.bestblob()
            info = Gst.Structure.new_empty('roi')
            info.set_value('id', t.id)
            info.set_value('ts', ts)
            info.set_value('bbox', blob.bbox )
            sample = Gst.Sample.new(b, None, None, info)
            logging.debug('new tag with object track info for track %s',str(t.id))
            tag_list.add_value(Gst.TagMergeMode.APPEND, Gst.TAG_APPLICATION_DATA, sample)	
        if tag_list.n_tags()>0:
            outbuffer.add_meta(self.api, tag_list)
            self.post_message(Gst.Message.new_tag(self, tag_list))

        return Gst.FlowReturn.OK
 def test_canConvertItemToType(self):
     tracker = Tracker()
     contents = mock()
     timezone = mock()
     item = tracker._convertToItem(testType, contents, timezone )
     storedItem, storedTimezone = item.contains()
     self.assertEqual(storedItem, contents)
     self.assertEqual(storedTimezone, timezone)
Пример #6
0
def iterations_from_file(config, filename):
    tracker = Tracker(dbdir=config.tracker.get('local_store_directory'))
    f = open(filename)
    contents = ''
    for l in f: contents += l
    f.close()
    iterations = tracker.parse_stories(contents)
    return iterations
Пример #7
0
def beer_fitness(population):
    for p in population:
        #perform simulation
        points = []
        for i in range(10):
#            print p.ann
            t = Tracker(p.ann)
            points.append(t.run())
        p.fitness = sum(points)*1.0/len(points)*1.0
def main ():

    #Introduction
    print ("This program uses a cannonball to shoot at a target.")

    #Create graphics window
    win = GraphWin(200, 200)
    win.setCoords(0.0, 0.0, 25.0, 25.0)
    target = Target(win)

    flag = False
    targetHit = False
    while not flag:

    #Get inputs
        print ()
        a = eval(input("Enter the launch angle in degrees: "))
        v = eval(input("Enter the initial velocity in meters per second: "))
        h = eval(input("Enter the initial height in meters: "))

    #Create tracker
        projectile = Projectile(a, v, h)
        tracker = Tracker(win, projectile)
        time = 0.0
        while projectile.getY() >= -5:
            time += .0005
            projectile.update(time)
            tracker.update()

    #Calculate if cannonball hit target
            points = target.points()
            center = tracker.circ.getCenter()
            center_x = center.getX()
            center_y = center.getY()
            radius = tracker.circ.getRadius()
            for point in points:
                x = point.getX()
                y = point.getY()
                square_dist = (center_x-x) ** 2 + (center_y-y) ** 2
                if square_dist <= radius ** 2:
                    targetHit = True
        if targetHit:
            print ("\nYou hit the target!")
            flag = True
        else:
            flag = False
            print ("\nTry again!")


    #Close window
    win.getMouse()
    win.close()
Пример #9
0
def linear_regression(points):

    if Tracker.distance(points[0], meanPoint(points)) < 10:
        return [0, 1]

    num_pts = len(points)
    xc = points[:, [0]]
    yc = points[:, [1]]
    ones = np.ones((num_pts, 1))
    X = np.concatenate((ones, xc), axis=1)

    X_intermediary = np.dot(X.T, X)
    Y_intermediary = np.dot(X.T, yc)

    R = np.dot(inv(X_intermediary), Y_intermediary)

    k = R[1][0]
    last_2 = points[-2:]
    first_x = last_2[0][0]
    second_x = last_2[1][0]

    if first_x < second_x:
        return [1, k]
    else:
        return [-1, -k]
Пример #10
0
 def translate(self, readline, result=None, no_imports=None):
     # Tracker to keep track of information as the file is processed
     self.tokens = Tokens(self.default_kls)
     self.tracker = Tracker(result, self.tokens, self.wrapped_setup)
     
     # Add import stuff at the top of the file
     if self.import_tokens and no_imports is not True:
         self.tracker.add_tokens(self.import_tokens)
     
     # Looking at all the tokens
     with self.tracker.add_phase() as tracker:
         for tokenum, value, (_, scol), _, _ in generate_tokens(readline):
             self.tracker.next_token(tokenum, value, scol)
     
     # Add attributes to our Describes so that the plugin can handle some nesting issues
     # Where we have tests in upper level describes being run in lower level describes
     if self.with_describe_attrs:
         self.tracker.add_tokens(self.tracker.make_describe_attrs())
     
     # If setups should be wrapped, then do this at the bottom
     if self.wrapped_setup:
         self.tracker.add_tokens(self.tracker.wrapped_setups())
     
     # Add lines to bottom of file to add __testname__ attributes
     self.tracker.add_tokens(self.tracker.make_method_names())
     
     # Return translated list of tokens
     return self.tracker.result
Пример #11
0
    def __init__(self, window):

        self.gwin = window

        self.projectile = Projectile(0, 0, 10)
        self.tracker = Tracker(self.gwin, self.projectile)
        self.target = Target(self.gwin)
        self.hits = False
Пример #12
0
class Torrent_Downloader():
	''' Manages download logic:
		- Creation and removal of peers. 
		- Book keeping of pieces downloaded and in progress.
		- Checking completed pieces and writing to file.
	'''
	def __init__(self, torrent, start_listener_callback):
		self.torrent = torrent
		self.message_handler = MessageHandler(self.torrent, self)
		self.start_listener_callback = start_listener_callback
		self.ip = self.get_IP_address()
		self.tracker = Tracker(self.torrent.announce, self.torrent.get_params())
		self.peers = self.create_peers()
		self.io_loop = get_event_loop()
		self.index = 0
		self.callback_dict = {
			'check_piece' : self.torrent.check_piece_callback,
			'pieces_changed' : self.pieces_changed_callback,
			'start_listener' : self.start_listener_callback,
		}
		self.pieces_needed = []


	def get_IP_address(self):
		response = get('http://api.ipify.org?format=json')
		ip_object = loads(response.text)
		return ip_object["ip"]

	def create_peers(self):
		peers = []
		for p in self.tracker.parse_peer_address():
			if p[0] == self.ip:
				continue
			peers.append(Peer(p[0], p[1], self))
		return peers

	def pieces_changed_callback(self, peer):
		'''	Check if connected peer has pieces I need. Send interested message.
			Call choose_piece.
			If peer has no pieces I need, disconnect and remove from peers list.
		'''
		self.torrent.update_pieces_needed()
		for i in self.torrent.pieces_needed:
			if peer.has_pieces[i]:
				self.io_loop.create_task(self.message_handler.send_message(peer=peer, message_id=2))
				self.choose_piece(peer=peer)	
				break
			else:
				self.peers.remove(peer)

	def choose_piece(self, peer):
		'''	Finds the next needed piece, updates self.have and self.pieces_needed.
			calls construct_request_payload.
		'''
		piece_index = self.torrent.pieces_needed[0]
		self.torrent.have[piece_index] = True
		self.torrent.update_pieces_needed()
		self.message_handler.construct_request_payload(peer=peer, piece_index=piece_index)
Пример #13
0
def main():
    file_location, download_dir = get_args()
    
    # parse the torrent file and make into an object
    torrentfile = TorrentFile(file_location)

    # create bittorrent client (brain behind everything)
    client = BitTorrentClient(download_dir, torrentfile)
    client.create_files()

    # create tracker and add it to the client
    tracker = Tracker(client.peer_id, torrentfile)
    client.add_tracker(tracker)

    # connect to the peers associated to the tracker
    tracker.get_peers_and_connect(client, torrentfile)
    
    reactor.run()
Пример #14
0
def main(ball):
    c = Camera()
    color = ball

    log.info("Ball: " + color)
    t = BallTracker(color)
    ballpos = None
    while ballpos is None:
        frame = c.get_frame()
        ballpos = t.getBallCoordinates(frame)
        ballpos = Tracker.transformCoordstoDecartes(ballpos)

    previous_positions = np.array([ballpos])

    k = 20
    while True:

        frame = c.get_frame()
        ballpos = t.getBallCoordinates(frame)
        log.debug(ballpos)

        if ballpos is None:
            continue
        ballpos = Tracker.transformCoordstoDecartes(ballpos)
        previous_positions = np.append(previous_positions, [ballpos], axis=0)

        last_k_positions = previous_positions[-k:]

        direction_vector = linear_regression(last_k_positions)
        direction_vector = [20 * x for x in direction_vector]

        p1 = Tracker.transformCoordstoCV(round_point(ballpos))
        p2 = Tracker.transformCoordstoCV(round_point(add_points(
            ballpos, direction_vector)))
        frame = cv2.circle(frame, p1, 20, (0, 0, 0), 2)
        cv2.line(frame, p1, p2, (0, 255, 122), 2)

        cv2.imshow('frame', frame)
        l = cv2.waitKey(5) & 0xFF
        if l == 27:
            break

    c.close()
    cv2.destroyAllWindows()
Пример #15
0
class Main:
    def __init__(self, trackerUrl, trackerPass):
        self.tracker = Tracker(trackerUrl, trackerPass)
    
    def packetHandler(self, aprsString):
        print 'APRS String: %s' % aprsString
        packet = APRSPacket()
        if packet.parse(aprsString):
            print '%s -> %s' % (packet.source, packet.dest)
            print 'Report type: %s' % packet.reportType
            if packet.hasLocation:
                print 'Time: %sZ' % packet.time
                print 'Coordinates: %f, %f, Altitude: %d ft' % (packet.latitude, packet.longitude, packet.altitude)
                print 'Course: %d, Speed: %d kn, Bearing: %d' % (packet.course, packet.speed, packet.bearing)
            print 'Comment: %s' % packet.comment
            
            print 'Uploading to tracker'
            self.tracker.track(packet)
            
            print ''
Пример #16
0
def main():

    options, files = getopt.getopt(sys.argv[1:], 'ivt:', ['info', 'verbose', 'threads:'])

    for flag, value in options:
        if flag == '-v' or flag == '--verbose':
            configuration['verbose'] = True
        elif flag == '-t' or flag == '--threads':
            try:
                configuration['threads'] = int(value)
            except:
                usage()
        elif flag == '-i' or flag == '--info':
            configuration['info'] = True
        else:
            usage()

    if len(files) != 1:
        usage()

    try:
        torrent = Torrent(files[0])
    except:
        print 'Impossible to read torrent file/magnet link:', files[0]
        exit(1)

    if configuration['info'] == True:
        torrent.show()
        exit(0)

    torrent.start()

    generate_clientid()

    tracker = Tracker(torrent.data['announce'])
    tracker.update(torrent)

    swarm = Swarm()
    swarm.update_peers(tracker)

    threads = configuration['threads']
Пример #17
0
    def visualize(self, out_filename="out/training_bs.html", out_filename_pickle="out/training_bs.pickle"):
        # Do bootstrap for the confusion table.
        n_bs = 1
        widgets = [progressbar.Percentage(),
                   ' ', progressbar.Bar(),
                   ' ', progressbar.ETA(),
                   ' ', progressbar.AdaptiveETA()]
        bs_progress = progressbar.ProgressBar(widgets=widgets).start()

        cts = []
        for bs_iter in bs_progress(range(n_bs)):
            n_dialogs = len(self.training_dialogs)

            dataset = self.training_dialogs

            tracker = Tracker(self.model, inv=False)
            tracker.simulate(dataset)
            cts.append(tracker.out_data['confusion_tables'])

        ct = bootstrap.from_all_confusion_tables(cts)

        context = {}
        context['tracker'] = tracker.out_data
        context['bootstrap_ct'] = ct
        context['mean_score'] = np.mean([ctt.mean_score for ctt in ct.values()])
        context['model'] = self.model
        context['training_metrics'] = self.training_metrics
        context['training_data'] = self.training_dialogs
        env = Environment(loader=FileSystemLoader('tpl'))
        env.globals.update(zip=zip)

        tpl = env.get_template('training.html')
        with open(out_filename, "w") as f_out:
            f_out.write(tpl.render(**context))
        with open(out_filename_pickle, "w") as f_out:
            info = {
                'mean_score': float(context['mean_score']),
                'losses': [float(x) for x in context['training_metrics']['losses']],
                #'simulation': context['tracker']['simulation']
            }
            f_out.write(json.dumps(info))
Пример #18
0
    def __init__(self, config: ConfigurationFile):
        self.config = config
        self.database = Database(self.config.db_file)
        self.organizer = Organizer(self.config, self.config.db_file)
        self.downloader = Downloader(self.config.db_file, self.organizer,
                                     self.config)
        self.tracker = Tracker(self.config.db_file, self.downloader,
                               self.config.update_period)

        self.tracker.start()
        self.downloader.start()
        self.organizer.start()
Пример #19
0
	def __init__(self, lines, line_size, verbose):
		self.statistics_tracker = Tracker()
		self.processors = 4
		self.verbose = verbose

		shared_bus = Bus()

		# Register one cache for each processor
		self.caches = []
		for cache_id in range(self.processors):
			cache = Cache(cache_id, lines, line_size, shared_bus, 
										self.statistics_tracker, self.verbose)
			self.caches.append(cache)
Пример #20
0
    def do_trackers(self, callback=None):
        assert(len(self.hash) == 20)
        # talk to trackers in attempt to get peers
        if not self.started(): raise StopIteration
        if not self.meta: raise StopIteration

        if 'announce-list' in self.meta:
            tier1 = self.meta['announce-list'][0]
            for url in tier1:
                tracker = Tracker.instantiate(url, self.hash)
                self.trackers[tracker.get_key()] = tracker
                if tracker.can_announce():
                    result = yield gen.Task( tracker.announce )
                    logging.info('%s tracker announce got result %s' % ([self.hash], result))
Пример #21
0
	def __init__(self, torrent, start_listener_callback):
		self.torrent = torrent
		self.message_handler = MessageHandler(self.torrent, self)
		self.start_listener_callback = start_listener_callback
		self.ip = self.get_IP_address()
		self.tracker = Tracker(self.torrent.announce, self.torrent.get_params())
		self.peers = self.create_peers()
		self.io_loop = get_event_loop()
		self.index = 0
		self.callback_dict = {
			'check_piece' : self.torrent.check_piece_callback,
			'pieces_changed' : self.pieces_changed_callback,
			'start_listener' : self.start_listener_callback,
		}
		self.pieces_needed = []
Пример #22
0
	def __init__(self, **kwargs):
		"""Initialize the keycode bindings and all controllers, create output dir."""
		settings = {
			'experimentName' : 'someNameHere',
			'outputRootDir' : os.path.normpath(os.path.expanduser("~/kauferdata")),
			'keyBindings' : {
				'quit' : 'q',
				'toggleStimulator' : 't',
				'triggerStimulator' : 's'
				},
			'audio' : {},
			'gui' : {},
			'stimulator' : { 'activeProtocolName' : 'nucleusAccumbensExample' },
			'tracker' : {},
			'videoIn' : {},
			'videoOut' : {},
			'writer' : {},
			}
		settings.update(kwargs)
		trialDir = "{0}_{1}_{2}".format(time.strftime("%y%m%d%H%M%S"),
				settings['experimentName'], settings['stimulator']['activeProtocolName'])
		settings['outputDataDir'] = os.path.join(settings['outputRootDir'], trialDir)
		self.keyBindings = settings['keyBindings']
		self.keycodeBindings = {k: getattr(opencvgui.keycodes, v)
				for k,v in self.keyBindings.items() }
		os.makedirs(os.path.join(settings['outputDataDir'], 'audio'))
		self.writeExperimentData(settings)
		for x in ['audio', 'videoOut', 'writer']:
			kwargs[x] = {} if not kwargs.has_key(x) else kwargs[x]
			kwargs[x]['outputDataDir'] = settings['outputDataDir']

		# gui and writer both need a reference to the app instance because they
		# draw on the state of so many other controllers
		self.audio = Audio(**settings['audio'])
		self.gui = Gui(self, **settings['gui'])
		self.stimulator = Stimulator(**settings['stimulator'])
		self.tracker = Tracker(**settings['tracker'])
		self.videoIn = VideoIn(**settings['videoIn'])
		self.videoOut = VideoOut(**settings['videoOut'])
		self.writer = Writer(self, **settings['writer'])
Пример #23
0
 def __init__(self, torr_dir="c:/torrent", data_dir="c:/torrent/files", tracker_ip="10.0.0.1:8000", callback=lambda: ".", session_dir="c:/torrent", db_name="torrent.db", ext=".torrent"):
     """
     Intialize class.
     
     Parameters
     torr_dir: Location for torrent meta data files
     data_dir: Location for data files
     tracker_ip: IP:PORT string of tracker
     callback: option function which will be called while attempting to seed torrents.
     torr_db: Name of anydbm database where we save what we're serving.
     """        
     
     self.callback = callback
     self.data_dir = data_dir
     self.torr_dir = torr_dir
     self.ext = ext
     
     self.torr_db = os.path.join(session_dir, db_name)
     self.db = None                 # pointer to our torrent DB
     
     self.my_tracker = Tracker(tracker_ip)
     self.session = Session(session_dir, db_name)
     self.session.register(self.callback)
Пример #24
0
class Tokeniser(object):
    """Endpoint for tokenising a file"""
    def __init__(self, default_kls='object', with_describe_attrs=True, import_tokens=None):
        self.default_kls = default_kls
        self.import_tokens = import_tokens
        self.with_describe_attrs = with_describe_attrs
    
    ########################
    ###   TRANSLATE
    ########################
    
    def translate(self, readline, result=None, no_imports=None):
        # Tracker to keep track of information as the file is processed
        self.tokens = Tokens(self.default_kls)
        self.tracker = Tracker(result, self.tokens)
        
        # Add import stuff at the top of the file
        if self.import_tokens and no_imports is not True:
            self.tracker.add_tokens(self.import_tokens)
        
        # Looking at all the tokens
        with self.tracker.add_phase() as tracker:
            for tokenum, value, (_, scol), _, _ in generate_tokens(readline):
                self.tracker.next_token(tokenum, value, scol)
        
        # Add attributes to our Describes so that the plugin can handle some nesting issues
        # Where we have tests in upper level describes being run in lower level describes
        if self.with_describe_attrs:
            self.tracker.add_tokens(self.tracker.make_describe_attrs())
        
        # Add lines to bottom of file to add __testname__ attributes
        self.tracker.add_tokens(self.tracker.make_method_names())
        
        # Return translated list of tokens
        return self.tracker.result
 def __init__(self, *args):
     Tracker.__init__(self, *args)
     self.l = 400.0/self.video.image_shape()[1]
     self.radius = 24.0/self.video.image_shape()[1]
     self.renderer = PendulumLayer(self.l, self.radius)
Пример #26
0
from torrent_file import TorrentFile
import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Bittorrent client')
    parser.add_argument('--tests', action='store_true', help='Run doctests')
    parser.add_argument('--url',
                        default='http://173.230.132.32',
                        help='URL of tracker')
    parser.add_argument('--gen',
                        action='store_true',
                        help='Generate new torrent file with random data.')
    parser.add_argument('--fname',
                        metavar='filename',
                        default='myfile.torrent',
                        help='File to use for generation or reading.')
    args = parser.parse_args()
    if args.gen:
        # Generate new torrent file
        # torrent_file = torrent_file.TorrentFile(info_dict, args.fname, True)
        pass
    else:
        torrent_file = TorrentFile(args.fname)

    if args.tests:
        import doctest
        doctest.testmod()

    tracker = Tracker(torrent_file)
    tracker.connect()
Пример #27
0
class RoadEstimation:
    def __init__(self):
        # specify topic and data type
        self.sub_bbox_1 = rospy.Subscriber("camera1/detection/vision_objects",
                                           DetectedObjectArray,
                                           self.bbox_array_callback)
        self.sub_bbox_6 = rospy.Subscriber("camera6/detection/vision_objects",
                                           DetectedObjectArray,
                                           self.bbox_array_callback)
        self.sub_pcd = rospy.Subscriber("/points_raw", PointCloud2,
                                        self.pcd_callback)
        # self.sub_pose = rospy.Subscriber("/current_pose", PoseStamped, self.pose_callback)

        # Publisher
        self.pub_intersect_markers = rospy.Publisher(
            "/vision_objects_position_rviz", MarkerArray, queue_size=10)
        self.pub_plane_markers = rospy.Publisher("/estimated_plane_rviz",
                                                 MarkerArray,
                                                 queue_size=10)
        self.pub_plane = rospy.Publisher("/estimated_plane",
                                         Plane,
                                         queue_size=10)
        self.pub_pcd_inlier = rospy.Publisher("/points_inlier",
                                              PointCloud2,
                                              queue_size=10)
        self.pub_pcd_outlier = rospy.Publisher("/points_outlier",
                                               PointCloud2,
                                               queue_size=10)

        self.cam1 = camera_setup_1()
        self.cam6 = camera_setup_6()
        self.plane = Plane3D(-0.157, 0, 0.988, 1.9)
        self.plane_world = None
        self.plane_tracker = None
        self.sac = RANSAC(Plane3D,
                          min_sample_num=3,
                          threshold=0.22,
                          iteration=200,
                          method="MSAC")

        self.tf_listener = TransformListener()
        self.tfmr = Transformer()
        self.tf_ros = TransformerROS()

    def display_bboxes_in_world(self, cam, bboxes):
        vis_array = MarkerArray()
        xlist, ylist = [], []
        for box_id, bbox in enumerate(bboxes):
            d, C = cam.bounding_box_to_ray(bbox)
            intersection = self.plane.plane_ray_intersection(d, C)
            # print(intersection[0,0],'\t', intersection[1,0],'\t', intersection[2,0])
            marker = visualize_marker(intersection,
                                      mkr_id=box_id,
                                      scale=0.5,
                                      frame_id="velodyne",
                                      mkr_color=[0.0, 0.8, 0.0, 1.0])
            vis_array.markers.append(marker)
            xlist.append(intersection[0, 0])
            ylist.append(intersection[1, 0])

        self.pub_intersect_markers.publish(vis_array)

        # plt.pause(0.001)

    def bbox_array_callback(self, msg):
        if msg.header.frame_id == "camera1":
            cam = self.cam1
        elif msg.header.frame_id == "camera6":
            cam = self.cam6
        else:
            rospy.logwarn(
                "unrecognized frame id {}, bounding box callback in road estimation fail",
                msg.header.frame_id)
            return

        # rospy.loginfo("camera {:d} message received!!".format(camera.id))
        bboxes = []
        for obj in msg.objects:
            # rospy.loginfo("{}".format(obj.label))
            # rospy.loginfo("x:{} y:{} width:{} height:{} angle:{}".format(obj.x, obj.y, obj.width, obj.height, obj.angle))
            bbox = BoundingBox(obj.x,
                               obj.y,
                               obj.width,
                               obj.height,
                               obj.angle,
                               label=obj.label)
            bboxes.append(bbox)
        self.display_bboxes_in_world(cam, bboxes)

    def estimate_plane(self, pcd):
        # threshold_z = [2.0, -0.5]
        # pcd_z = clip_pcd_by_distance_plane(pcd, self.plane, threshold_z, in_only=True)
        vec1 = np.array([1, 0, 0])
        vec2 = np.array([0, 0, 1])
        pt1 = np.array([0, 0, 0])
        threshold = [-3.0, 6.0]
        plane_from_vec = Plane3D.create_plane_from_vectors_and_point(
            vec1, vec2, pt1)
        pcd_close = clip_pcd_by_distance_plane(pcd,
                                               plane_from_vec,
                                               threshold,
                                               in_only=True)

        pcd_close = pcd_close.extract_low()

        seed = 0
        np.random.seed(seed)
        plane1, _, _, _ = self.sac.ransac(pcd_close.data.T,
                                          constraint=self.plane.param,
                                          constraint_threshold=0.5)
        # vis(plane1, pcd, dim_2d=True)

        # normal = vec1.reshape([-1,1]) / np.linalg.norm(vec1)
        # depth = np.matmul(pcd_close.data.T , normal).reshape([-1])
        distance = plane1.distance_to_plane(pcd_close.data.T)
        # threshold_outer = 0.3
        # threshold_inner = 0.1
        # mask_outer = distance < threshold_outer
        # mask_inner = distance < threshold_inner
        # bin_dist = 5.0
        # depth_min = np.min(depth)
        # bin_num = int((np.max(depth) -  depth_min)/ bin_dist) + 1
        # for i in range(bin_num):
        #     depth_thred_min, depth_thred_max = i*bin_dist+depth_min, (i+1)*bin_dist+depth_min
        #     mask_depth = np.logical_and(depth > depth_thred_min, depth < depth_thred_max)
        #     part_inner = np.logical_and(mask_depth, mask_inner)
        #     part_outer = np.logical_and(mask_depth, mask_outer)
        #     sum_outer = np.sum(part_outer)
        #     sum_inner = np.sum(part_inner)
        #     if sum_outer == 0:
        #         ratio = 1
        #     else:
        #         ratio = float(sum_inner) / sum_outer
        #     if not ratio == 1:
        #         print(i, "{:.1f}".format(depth_thred_min), "{:.1f}".format(depth_thred_max), sum_inner, sum_outer, "{:.4f}".format(ratio))

        print('Plane params:', plane1.param.T)
        threshold_inlier = 0.15
        pcd_inlier = pcd_close.data[:, distance <= threshold_inlier]
        pcd_outlier = pcd_close.data[:, distance > threshold_inlier]
        return plane1, pcd_inlier, pcd_outlier

    def create_and_publish_plane_markers(self,
                                         plane,
                                         frame_id='velodyne',
                                         center=None,
                                         normal=None):
        if normal is None:
            v1 = np.array([[0, 0, 1.0]]).T
        else:
            v1 = normal
        v2 = np.array([[plane.a, plane.b, plane.c]]).T
        q_self = Quaternion_self.create_quaternion_from_vector_to_vector(
            v1, v2)
        q = Quaternion(q_self.x, q_self.y, q_self.z, q_self.w)
        euler = np.array(euler_from_quaternion(
            (q.x, q.y, q.z, q.w))) * 180 / np.pi
        print("Euler: ", euler)
        marker_array = MarkerArray()
        if center is None:
            center = [10, 0, (-plane.a * 10 - plane.d) / plane.c]
        marker = visualize_marker(center,
                                  frame_id=frame_id,
                                  mkr_type='cube',
                                  orientation=q,
                                  scale=[20, 10, 0.05],
                                  lifetime=30,
                                  mkr_color=[0.0, 0.8, 0.0, 0.8])
        marker_array.markers.append(marker)
        return marker_array

    # @profile # profiling for analysis
    def pcd_callback(self, msg):
        rospy.logwarn("Getting pcd at: %d.%09ds, (%d,%d)",
                      msg.header.stamp.secs, msg.header.stamp.nsecs,
                      msg.height, msg.width)

        pcd_original = pointcloud2_to_xyz_array(msg)

        pcd = PointCloud(pcd_original.T)

        self.plane, pcd_inlier, pcd_outlier = self.estimate_plane(pcd)
        transform_matrix, trans, rot, euler = get_transformation(
            frame_from='/velodyne',
            frame_to='/world',
            time_from=msg.header.stamp,
            time_to=msg.header.stamp,
            static_frame='/world',
            tf_listener=self.tf_listener,
            tf_ros=self.tf_ros)
        if not transform_matrix is None:
            plane_world_param = np.matmul(
                np.linalg.inv(transform_matrix).T,
                np.array(
                    [[self.plane.a, self.plane.b, self.plane.c,
                      self.plane.d]]).T)
            plane_world_param = plane_world_param / np.linalg.norm(
                plane_world_param[0:3])

            if self.plane_tracker is None:
                self.plane_tracker = Tracker(msg.header.stamp,
                                             plane_world_param)
            else:
                self.plane_tracker.predict(msg.header.stamp)
                self.plane_tracker.update(plane_world_param)
            print("plane_world:", plane_world_param.T)
            print("plane_traker:", self.plane_tracker.filter.x_post.T)

            # self.plane_world = Plane3D(plane_world_param[0,0], plane_world_param[1,0], plane_world_param[2,0], plane_world_param[3,0])
            self.plane_world = Plane3D(self.plane_tracker.filter.x_post[0, 0],
                                       self.plane_tracker.filter.x_post[1, 0],
                                       self.plane_tracker.filter.x_post[2, 0],
                                       self.plane_tracker.filter.x_post[3, 0])
            center_pos = np.matmul(
                transform_matrix,
                np.array([[
                    10, 0, (-self.plane.a * 10 - self.plane.d) / self.plane.c,
                    1
                ]]).T)
            center_pos = center_pos[0:3].flatten()
            # normal = np.matmul( transform_matrix, np.array([[0., 0., 1., 0.]]).T)
            # normal = normal[0:3]
            normal = None
            marker_array = self.create_and_publish_plane_markers(
                self.plane_world,
                frame_id='world',
                center=center_pos,
                normal=normal)
            self.pub_plane_markers.publish(marker_array)

        plane_msg = Plane()
        plane_msg.coef[0], plane_msg.coef[1], plane_msg.coef[
            2], plane_msg.coef[
                3] = self.plane.a, self.plane.b, self.plane.c, self.plane.d

        self.pub_plane.publish(plane_msg)

        # pcd_msg_inlier = create_point_cloud(pcd_inlier.T, frame_id='velodyne')
        # pcd_msg_outlier = create_point_cloud(pcd_outlier.T, frame_id='velodyne')
        pcd_msg_inlier = xyz_array_to_pointcloud2(pcd_inlier.T,
                                                  stamp=msg.header.stamp,
                                                  frame_id='velodyne')
        pcd_msg_outlier = xyz_array_to_pointcloud2(pcd_outlier.T,
                                                   stamp=msg.header.stamp,
                                                   frame_id='velodyne')
        self.pub_pcd_inlier.publish(pcd_msg_inlier)
        self.pub_pcd_outlier.publish(pcd_msg_outlier)

        rospy.logwarn("Finished plane estimation")

    def pose_callback(self, msg):
        rospy.logdebug("Getting pose at: %d.%09ds", msg.header.stamp.secs,
                       msg.header.stamp.nsecs)
Пример #28
0
    centers = []

    # y-cooridinate for speed detection line
    Y_THRESH = 320

    blob_min_width_far = 15
    blob_min_height_far = 15

    blob_min_width_near = 20
    blob_min_height_near = 20

    frame_start_time = None

    # Create object tracker
    tracker = Tracker(80, 3, 2, 1)

    # Capture livestream
    cap = cv2.VideoCapture(BASE_URL + 'playlist.m3u8')
    cap = cv2.VideoCapture('cars.mp4')

    while True:
        centers = []
        frame_start_time = datetime.utcnow()
        ret, frame = cap.read()

        orig_frame = copy.copy(frame)

        #  Draw line used for speed detection
        cv2.line(frame, (0, Y_THRESH), (1600, Y_THRESH), (255, 0, 0), 2)
Пример #29
0
        data = self.meta_info[b"info"][b"pieces"]
        pieces, offset, length = [], 0, len(data)
        pieces = [data[offset:offset + 20] for offset in range(0, length, 20)]
        return pieces

    @property
    def output_file(self):
        """
        Returns the output filename that we will use to save the torrent data in
        """
        logging.info("Torrent output file: {0}".format(
            self.meta_info[b"info"][b"name"].decode("utf-8")))
        return self.meta_info[b"info"][b"name"].decode("utf-8")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-f",
                        "--file",
                        help="Torrent's absolute file path",
                        type=str,
                        required=True)
    args = parser.parse_args()

    t = Torrent(torrent_path=args.file)
    tr = Tracker(t)

    loop = asyncio.get_event_loop()
    r1 = loop.run_until_complete(tr.connect())
    print(r1)
Пример #30
0
def test_board_scan():
    t = Tracker(Board(5, 500, 500, 500, othelloAI()))
    t.bd.generate_board()
    out = t.board_scan()
    assert out is False
Пример #31
0
selection = handle.region()

# Process the first frame
imagefile = handle.frame()
if not imagefile:
    sys.exit(0)

# Initialize the Tracker
image = cv2.imread(imagefile, cv2.IMREAD_COLOR)

parameters = Params()
parameters.init_pos = np.floor([selection.x+selection.width/2, selection.y+selection.height/2])                                # Initial position
parameters.pos = parameters.init_pos
parameters.target_size = np.floor([selection.width, selection.height])        

tracker = Tracker(image, parameters)
tracker.train(image, True)

while True:
    # *****************************************
    # VOT: Call frame method to get path of the 
    #      current image frame. If the result is
    #      null, the sequence is over.
    # *****************************************
    imagefile = handle.frame()
    if not imagefile:
        break

    # Processing the current image
    image = cv2.imread(imagefile, cv2.IMREAD_COLOR)
    region, lost, xtf = tracker.detect(image)
Пример #32
0
            "-c",
            "--config",
            action="store",
            dest="config",
            type="str",
            help="Config file, default %default",
            default="./config.ini")

        options, args = parser.parse_args()

        if not os.path.isfile(options.config):
            raise RuntimeError('Given config file was not found')

        config = Config()
        config.read(options.config)
        logger = build_logger(config.fetch('logs_dir'), logging.DEBUG)

        app = Tracker(config, logger)
        app.track()

    except KeyboardInterrupt as e:
        if logger is not None:
            logger.info('Tracker stopped by user. PID: {0}'.format(os.getpid()))
        else:
            print 'Tracker stopped by user. PID: {0}'.format(os.getpid())
    except Exception as e:
        if logger is not None:
            logger.critical(e.message, exc_info=True)
        else:
            print traceback.format_exc()
Пример #33
0
def test_moves_avail():
    t = Tracker(Board(5, 500, 500, 500, othelloAI()))
    out = t.moves_avail()
    assert out is False
Пример #34
0
class Cloud(object):
    """
    Put or get a file from the Cloud.  This class maintains the session, which includes all files that we're serving up to other clients.
    
    This class is reponsible for "put"-ting and "get"-ting files to and from the cloud.
    """
    
    def __init__(self, torr_dir="c:/torrent", data_dir="c:/torrent/files", tracker_ip="10.0.0.1:8000", callback=lambda: ".", session_dir="c:/torrent", db_name="torrent.db", ext=".torrent"):
        """
        Intialize class.
        
        Parameters
        torr_dir: Location for torrent meta data files
        data_dir: Location for data files
        tracker_ip: IP:PORT string of tracker
        callback: option function which will be called while attempting to seed torrents.
        torr_db: Name of anydbm database where we save what we're serving.
        """        
        
        self.callback = callback
        self.data_dir = data_dir
        self.torr_dir = torr_dir
        self.ext = ext
        
        self.torr_db = os.path.join(session_dir, db_name)
        self.db = None                 # pointer to our torrent DB
        
        self.my_tracker = Tracker(tracker_ip)
        self.session = Session(session_dir, db_name)
        self.session.register(self.callback)
            
    def put(self, backup_file):
        """
        Put files to the tracker, given an encrypted ZIP archive, and then serve them.
        
        Parameters
        backup_file: Takes either a full path, or the basename (assumes a directory of self.data_dir in the latter case)
        """
        
        log.debug("backup_file = %s, data_dir = %s, torr_dir = %s, tracker = %s" % (backup_file, self.data_dir, self.torr_dir, self.my_tracker.tracker_ip))        
        
        # setup our TorrentMetaInfo object and create a torrent
        ti = TorrentMetaInfo(self.torr_dir, self.data_dir, self.my_tracker.tracker_ip, os.path.basename(backup_file))
        
        # Make the torrent file and save new TorrentMetaInfo object with torrent name
        if ti.is_valid_create_object():        
            t=CreateTorrent(ti)
            ti = t.create(self.my_tracker)
        else:
            raise Exception("TorrentMetaInfo object is not valid for CreateTorrent.")
        
        # Upload torrent to tracker.  Return false if the upload fails.
        if not self.my_tracker.upload_torrent(ti):
            log.debug("Failed to upload torrent to tracker.")
            return False

        # Serve the torrent
        return self.session.serve(ti)
    
    def get(self, torr_hash_l):
        """
        Pass a torrent info hash, download files for torrent.
        
        Parameters
        torr_hash_l: Either a string or a list.  Right now, it only takes a single info hash of the torrent to pull down from the tracker.  The
                        data files associated with the torrent are then downloaded from the cloud.
        """
                
        if self.get_torrents(torr_hash_l):
            self.get_files(torr_hash_l)
            return True
        else:
            return False
            
    def get_files(self, torr_hash_l):
        """
        Download our files, given a torrent's info hash (string) or a list of torrent info hashes (strings).  Used by the get() function to pull down data
        files from the cloud.
        
        Parameters
        torr_hash_l: string, or list of strings 
        """
        self.session.serve_torrent_by_hash(torr_hash_l, self.torr_dir, self.data_dir, self.my_tracker.tracker_ip, self.ext)
        
    def serve_torrents(self):
        """
        Serve up all torrents in our torr directory.  Does not take any parameters, simply checks for all torrents
        in our torrent meta data directory, and serves them.
        """
        self.session.serve_all_torrents(self.torr_dir, self.data_dir, self.my_tracker.tracker_ip, self.ext)
               
    def get_torrents(self, torr_hash_l):
        """
        Pull a torrent down from the tracker by ID.
        
        Parameter 
        torr_hash_l: list or string of info hashes of torrents to download from the tracker.
        """
        
        flag = 0
        
        if hasattr(torr_hash_l, '__iter__'):
            for t in torr_hash_l:
                torr_loc = self.my_tracker.download_torrent(t, self.torr_dir)
                if not torr_loc:
                    log.debug("Multiple Torr ID's: unable to get torrent location.")
                    flag = 1
        else:
            torr_loc = self.my_tracker.download_torrent(torr_hash_l, self.torr_dir)
            if not torr_loc:
                log.debug("Single ID: unable to get torrent location.")
                flag = 1
                
        if flag:
            return False
        else:
            return True
    
    # Mark for removal ?
    def get_files_by_torr_name(self, torr_name_l):
        """
        Download files given a torrent file name.  This function will likely be going away as it's not part of our workflow at the moment.
        
        Parameters
        torr_name_l: string or list of torrent info hashes
        """
        # setup our TorrentMetaInfo object and create a torrent
        
        if hasattr(torr_name_l, '__iter__'):
            for t in torr_name_l:  
                ti = TorrentMetaInfo(self.torr_dir, self.data_dir, self.my_tracker.tracker_ip, torr_file=t)
                self.session.serve(ti)
        else:
            ti = TorrentMetaInfo(self.torr_dir, self.data_dir, self.my_tracker.tracker_ip, torr_file=torr_name_l)
            self.session.serve(ti)
    
    def del_torrent(self, ih):
        """
        Given an info hash, delete a torrent locally
        """
        
        try:
            self.db = anydbm.open(self.torr_db, 'c')
        except:
            return False
        
        for info_hash, filename in self.db.iteritems():
            if info_hash == ih:
                self.unstor_torr(ih)
                if self.session.unserve(info_hash=ih):
                    log.debug("Torrent unserved.")
                else:
                    log.debug("Failed to unserve torrent.")
                return True    
                
        self.db.close()
        return False
    
    ###########################################
    # Start/Stop Cloud
    ###########################################    
        
    # incomplete
    def stop(self):
        """
        Save a session's state
        """
        
        # loop through our handles and write out fast resume data
        for h in handles:
            if h.is_valid() and h.has_metadata():
                data = lt.bencode(h.write_resume_data())
                open(os.path.join(options.save_path, h.get_torrent_info().name() + '.fastresume'), 'wb').write(data)
        
        # save session settings here
    
    def start(self):
        """
        Start the cloud from a saved state
        """
        
        if self.serving_files():
            log.debug("Cloud already started.")
            return False
        
        # Open our database, and grind through it.
        try:
            self.db = anydbm.open(self.torr_db, 'c')
        except:
            return False
        
        flag = 0
        
        for info_hash, filename in self.db.iteritems():
            log.debug("Loading... %s %s..." % (info_hash, filename,))
            print os.path.join(self.torr_dir, filename+self.ext)
            ti = TorrentMetaInfo(self.torr_dir, self.data_dir, self.my_tracker.tracker_ip, filename, str(filename+self.ext))
            
            # if we have it, and the tracker has it, serve it
            if not ti.is_valid_torr():
                log.debug("Torrent invalid: %s, %s." % (info_hash, filename, ))
                self.unstor_torr(info_hash)
            elif not self.my_tracker.has_torrent(ti):
                log.debug("Torrent does not exist on tracker: %s, %s." % (str(ti.info_hash), filename, ))
                self.unstor_torr(info_hash)
            else:
                self.session.serve(ti)
                flag = 1                # serve at least one torrent...
                
        self.db.close()
        if flag:
            return True
        else:
            log.debug("Nothing in the database to serve.")
            return False
    
    def serving_files(self):
        """
        Tells us if the cloud is serving any files.
        """
        if len(self.session.handles) > 0:
            return True
        else:
            return False
    
    
    ###########################################
    # Database functions
    ###########################################        
    
    def stor_torr(self, info_hash, torr_name):
        """
        Store torrents we're serving in the database.  If it's already in our database, just
        ignore it.  Pairs are stored as key => infohash, value=>torr_name
        
        Parameters
        torr_name: file name of torrent (string)
        info_hash: info hash of torrent (string)
        """
        self.db = anydbm.open(self.torr_db, 'c')
        if not self.db.has_key(info_hash):
            self.db[info_hash] = torr_name
            log.debug("info_hash %s, torr_name: %s" % (info_hash, torr_name,))
        self.db.close()
        
    def unstor_torr(self, info_hash):
        """
        Delete a torrent from our database.
        
        Parameters
        info_hash: info hash of torrent to delete
        
        Returns
        True if deleted.
        False if not deleted, or failure.
        """
        try:
            self.db = anydbm.open(self.torr_db, 'w')
        except:
            log.debug("Failed opening database for key removal.")
            return False
        else:
            try:
                del self.db[info_hash]
            except:
                log.debug("Failed removing key.")
                return False
            else:
                return True

    def show_db(self):
        """
        Enumerate all values in our db
        """
        self.db = anydbm.open(self.torr_db, 'c')
        for info_hash, filename in self.db.iteritems():
            print info_hash, " ", filename
        self.db.close()
        
Пример #35
0
 def setUp(self):
     """Set up a new database session."""
     session = create_database_session('sqlite:///:memory:')
     self._tracker = Tracker(session)
Пример #36
0
class TrackerTest(unittest.TestCase):
    """Unit test for the tracker"""
    def setUp(self):
        """Set up a new database session."""
        session = create_database_session('sqlite:///:memory:')
        self._tracker = Tracker(session)

    def test_empty_categories(self):
        has_category = self._tracker.has_category("anything")
        self.assertFalse(has_category)

    def test_one_category(self):
        self._tracker.create_category('one')
        self.assertTrue(self._tracker.has_category("one"))
        self.assertFalse(self._tracker.has_category("two"))

    def test_two_categories(self):
        self._tracker.create_category('one')
        self._tracker.create_category('two')
        self.assertTrue(self._tracker.has_category("one"))
        self.assertTrue(self._tracker.has_category("two"))

    def test_duplicated_category_creation(self):
        self._tracker.create_category('one')
        with self.assertRaises(ValueError):
            self._tracker.create_category('one')

    def test_default_category_type(self):
        self._tracker.create_category('one')
        self.assertFalse(self._tracker.is_integer_category('one'))

    def test_non_integer_category(self):
        self._tracker.create_category('one', is_integer=False)
        self.assertFalse(self._tracker.is_integer_category('one'))

    def test_empty_categories_listing(self):
        self.assertEqual(self._tracker.list_categories(), [])

    def test_multiple_categories_listing(self):
        self._tracker.create_category('one')
        self._tracker.create_category('two')
        self.assertEqual(self._tracker.list_categories(), ['one', 'two'])

    def test_category_renaming(self):
        self._tracker.create_category('one')
        self._tracker.create_category('two')
        self._tracker.rename_category('two', 'three')
        self.assertEqual(self._tracker.list_categories(), ['one', 'three'])

    def test_missing_category_renaming(self):
        self._tracker.create_category('one')
        with self.assertRaises(ValueError):
            self._tracker.rename_category('two', 'three')

    def test_invalid_category_renaming(self):
        self._tracker.create_category('one')
        self._tracker.create_category('two')
        with self.assertRaises(ValueError):
            self._tracker.rename_category('two', 'one')

    def test_value_type_correction(self):
        self._tracker.create_category('one')
        self._tracker.correct_value_type('one', is_integer=True)
        self.assertTrue(self._tracker.is_integer_category('one'))

    def test_value_correction_to_integer(self):
        self._tracker.create_category('one', is_integer=True)
        self._tracker.correct_value_type('one', is_integer=False)
        self.assertFalse(self._tracker.is_integer_category('one'))

    def test_remove_category(self):
        self._tracker.create_category('one')
        self._tracker.create_category('two')
        self._tracker.remove_category('one')
        self.assertEqual(self._tracker.list_categories(), ['two'])

    def test_remove_invalid_category(self):
        self._tracker.create_category('one')
        self._tracker.create_category('two')
        with self.assertRaises(ValueError):
            self._tracker.remove_category('three')

    def test_save_measurement(self):
        self._tracker.create_category('scores')
        self._tracker.save_measurement('scores', 5)

    def test_missing_category_for_measurement(self):
        with self.assertRaises(ValueError):
            self._tracker.save_measurement('missing', 1)

    def test_empty_category_listing(self):
        self._tracker.create_category('scores')
        self.assertEqual(self._tracker.list_measurements('scores'), [])

    def test_measurement_listing(self):
        self._tracker.create_category('scores')
        self._tracker.save_measurement('scores', 5)
        self._tracker.save_measurement('scores', 6)
        self._tracker.save_measurement('scores', 7)
        measurements = self._tracker.list_measurements('scores')
        self.assertEqual(measurements[0].id, 1)
        self.assertEqual(measurements[1].id, 2)
        self.assertEqual(measurements[2].id, 3)
        self.assertEqual(measurements[0].value, 5)
        self.assertEqual(measurements[1].value, 6)
        self.assertEqual(measurements[2].value, 7)

    def test_missing_category_measurement_listing(self):
        with self.assertRaises(ValueError):
            _ = self._tracker.list_measurements('missing')

    def test_measurement_correction(self):
        self._tracker.create_category('scores')
        self._tracker.save_measurement('scores', 5)
        self._tracker.save_measurement('scores', 6)
        self._tracker.save_measurement('scores', 7)
        self._tracker.correct_measurement(1, 1)
        self._tracker.correct_measurement(2, 2)
        self._tracker.correct_measurement(3, 3)
        measurements = self._tracker.list_measurements('scores')
        self.assertEqual(measurements[0].id, 1)
        self.assertEqual(measurements[1].id, 2)
        self.assertEqual(measurements[2].id, 3)
        self.assertEqual(measurements[0].value, 1)
        self.assertEqual(measurements[1].value, 2)
        self.assertEqual(measurements[2].value, 3)

    def test_remove_measurement(self):
        self._tracker.create_category('scores')
        self._tracker.save_measurement('scores', 5)
        self._tracker.save_measurement('scores', 6)
        self._tracker.save_measurement('scores', 7)
        self._tracker.remove_measurement(2)
        measurements = self._tracker.list_measurements('scores')
        self.assertEqual(measurements[0].id, 1)
        self.assertEqual(measurements[1].id, 3)
        self.assertEqual(measurements[0].value, 5)
        self.assertEqual(measurements[1].value, 7)

    def test_remove_missing_measurement(self):
        self._tracker.create_category('scores')
        with self.assertRaises(ValueError):
            self._tracker.remove_measurement(1)
Пример #37
0

cap = cv.VideoCapture(path)
cap.set(3, WIDTH)
cap.set(4, HEIGHT)
cv.namedWindow('Main')
cv.resizeWindow('Main', (WIDTH, HEIGHT))
total_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT))

print('ok 1')

initial_lh, initial_hh = 120,220
initial_ls, initial_hs = 122, 140
initial_lv, initial_hv = 135, 160

t = Tracker(initial_lh, initial_hh, initial_ls, initial_hs, initial_lv, initial_hv)

# TRACKER INIT

cv.namedWindow('Tracker')
cv.resizeWindow('Tracker', 600,600)
cv.createTrackbar("L-H", 'Tracker', initial_lh, 255, lambda eventValue, name='l_h': t.update(value=eventValue, name=name))
cv.createTrackbar("H-H", 'Tracker', initial_hh, 360, lambda eventValue, name='h_h': t.update(value=eventValue, name=name))
cv.createTrackbar("L-S", 'Tracker', initial_ls, 255, lambda eventValue, name='l_s': t.update(value=eventValue, name=name))
cv.createTrackbar("H-S", 'Tracker', initial_hs, 255, lambda eventValue, name='h_s': t.update(value=eventValue, name=name))
cv.createTrackbar("L-V", 'Tracker', initial_lv, 255, lambda eventValue, name='l_v': t.update(value=eventValue, name=name))
cv.createTrackbar("H-V", 'Tracker', initial_hv, 255, lambda eventValue, name='h_v': t.update(value=eventValue, name=name))

cv.createTrackbar("Thereshold_Min", 'Tracker', 127, 255, lambda eventValue, name='threshold_min': t.update(value=eventValue, name=name))
cv.createTrackbar("Thereshold_Max", 'Tracker', 255, 255, lambda eventValue, name='threshold_man': t.update(value=eventValue, name=name))
Пример #38
0
class SVMCLF():
    def __init__(self):

        # ROS nodes
        rospy.init_node('classifier', anonymous=True)
        rospy.Subscriber("camera/image", Image, self.callback, queue_size=1)
        self.pub = rospy.Publisher('driver_node/drivestate',
                                   Int8,
                                   queue_size=1,
                                   latch=True)
        self.imgcnn_pub = rospy.Publisher('camera/imgcnn', Image, queue_size=1)

        # publish "stop" on the drivestate topic
        print 'publishing -1'
        self.pub.publish(-1)
        print 'Importing tensorflow ...'
        import tensorflow as tf
        print 'Tensorflow imported.'
        # publish "go" on the drivestate topic

        # Trained SVM model
        fn_model = rospy.get_param('~cnnModelFile')
        graph_file = rospy.get_param('~cnnGraphFile')
        saver = tf.train.import_meta_graph(graph_file)
        self.sess = tf.Session()
        graph_dir = os.path.dirname(graph_file)
        graph = tf.get_default_graph()
        saver.restore(self.sess, tf.train.latest_checkpoint(graph_dir))
        self.prediction_op = graph.get_tensor_by_name("prediction_op:0")
        self.logits_op = graph.get_tensor_by_name("logits_op:0")
        #self.probs = graph.get_tensor_by_name("probs:0")
        self.x_placeholder = graph.get_tensor_by_name("x:0")
        self.keep_prob = graph.get_tensor_by_name("keep_prob:0")
        # svmparams = pickle.load(open(fn_params, 'rb')) #pickle.load(f2)
        # self.fmean = svmparams['fmean']
        # self.fstd = svmparams['fstd']

        # Settings
        self.nhistory = 1  # tracker buffer
        self.dt = 0.1  # update interal
        self.K_detthresh_stop = 0.7  # detection threshold (factor of window count)
        self.K_detthresh_warn = 1.2  # detection threshold (factor of window count)
        self.K_mapthresh = 0.08  # discard threshold (factor of window count)
        self.K_stopbias = 0.4  # bias to favor STOP over WARN (factor of window count)

        # Updates
        self.drive_state = 0
        self.img = [None]
        self.lastimgtime = -1

        # tracker
        self.tracker = Tracker(self.nhistory)

        # start
        self.loop()

    def callback(self, rosimg):
        self.img = CvBridge().imgmsg_to_cv2(rosimg)
        self.lastimgtime = rosimg.header.stamp.secs

    def loop(self):
        rate = rospy.Rate(1 / self.dt)
        lastupdate = -1
        while not rospy.is_shutdown():
            if (self.lastimgtime != lastupdate):
                start_time = time.time()
                # ---- process frame ---
                rosimg = self.img  # copy to local memory before processing
                dec, draw_img = self.processOneFrame(rosimg)
                lastupdate = self.lastimgtime
                # Publish results
                #print "State=" + str(dec) + " (" + str(time.time() - start_time) + "s)"
                self.drive_state = dec
                #print ("Drivestate = ",dec)
                self.pub.publish(self.drive_state)
                # Optional - Publish image for monitoring
                self.imgcnn_pub.publish(CvBridge().cv2_to_imgmsg(
                    draw_img, "bgr8"))

        rate.sleep()

    #def getFeatures(self,img):
    #    return [
    #        imagefunctions.num_corners(img),
    #        imagefunctions.num_edges(img),
    #        imagefunctions.num_red_pixels(img),
    #        imagefunctions.num_white_pixels(img),
    #        imagefunctions.abs_sobel_thresh(img, orient='y', sobel_kernel=3, thresh=(100, 200)),
    #        imagefunctions.mag_thresh(img, sobel_kernel=5, mag_thresh=(100, 180)),
    #        imagefunctions.dir_threshold(img, sobel_kernel=3, thresh=(np.pi/8, np.pi/4))
    #    ]

    #def normalize_features(self,feature_vector,fmn,fsd):
    #    numDim = len(feature_vector)
    #    normFeatures = []
    #    normfeat = [None]*numDim
    #    for i in range(numDim):
    #        normfeat[i] = (feature_vector[i]-fmn[i])/fsd[i]
    #    normFeatures.append(normfeat)
    #    #transpose result
    #    res = np.array(normFeatures).T
    #    return res

    def draw_labeled_bboxes(self, img, labels, boxcolor):
        # Iterate through all detected cars
        for item_number in range(1, labels[1] + 1):
            # Find pixels with each item_number label value
            nonzero = (labels[0] == item_number).nonzero()
            # Identify x and y values of those pixels
            nonzeroy = np.array(nonzero[0])
            nonzerox = np.array(nonzero[1])
            bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox),
                                                           np.max(nonzeroy)))
            # Draw the box on the image
            cv2.rectangle(img, bbox[0], bbox[1], boxcolor, 2)
        # Return the image
        return img

    def search_windows(self, img, windows, framenum=0):
        # preprocess frame
        img_prep = imagefunctions.preprocess_one_rgb(img[0:127][:])
        fvec = []
        for window in windows:
            # extract test window from image
            test_img = img_prep[window[0][1]:window[1][1],
                                window[0][0]:window[1][0]]
            # extract features
            #feat = self.getFeatures(test_img)
            # normalize features
            #normfeat = self.normalize_features(feat,self.fmean,self.fstd)
            # assemble batch
            #testvec = np.asarray(normfeat).reshape(1,-1)
            fvec.append(test_img)

        # batch prediction
        if (np.array(fvec).ndim >= 3):
            #prob_vec = self.sess.run(self.probs, feed_dict={self.x_placeholder:np.asarray(fvec, dtype=np.float32), self.keep_prob:1.0})
            rvec = self.sess.run(self.prediction_op,
                                 feed_dict={
                                     self.x_placeholder:
                                     np.asarray(fvec, dtype=np.float32),
                                     self.keep_prob:
                                     1.0
                                 })  #np.array(fvec).squeeze(axis=1))
        else:
            rvec = []

        # list of positive stop sign detection windows
        stop_indices = [i for i, x in enumerate(rvec) if x == 1]
        stop_windows = [windows[i] for i in stop_indices]

        # list of positive warn sign detection windows
        warn_indices = [i for i, x in enumerate(rvec) if x == 2]
        warn_windows = [windows[i] for i in warn_indices]

        # return positve detection windows
        return stop_windows, warn_windows

    def find_signs(self, img):
        startx = 10
        stopx = 68  #imgsize[0]-windowsize[0] #80
        starty = 0  #20 #19
        stopy = imgsize[1] - windowsize[1]  #30

        window_list = []
        for x in range(startx, stopx, slidestep[0]):
            for y in range(starty, stopy, slidestep[1]):
                img_in = img[y:y + windowsize[1], x:x + windowsize[0]]
                #img_crop_pp = imagefunctions.preprocess_one_rgb(img_crop)
                #img_in = np.array(255*img_crop_pp, dtype=np.uint8)
                if (imagefunctions.num_red_pixels(img_in) > min_red_pixels):
                    window_list.append(
                        ((x, y), (x + windowsize[0], y + windowsize[1])))

        #stop_windows, warn_windows = self.search_windows(img, window_list, framenum=random.randint(0,9999))
        stop_windows, warn_windows = self.search_windows(img, window_list)

        # if no window to search
        numwin = len(window_list)
        if (numwin == 0):
            decision = 0
            labels = [None]
            return decision, labels, img

        # Method 1 - Count windows


#        if ((len(stop_windows)<2) and (len(warn_windows)<2)):
#            return 0,[None]
#        elif (len(stop_windows)>=len(warn_windows)):
#            return 1,[None]
#        else:
#            return 2,[None]

# Method 2 - Localized heatmap based decision
        heat_stop = np.zeros_like(img[:, :, 0]).astype(np.float)
        heat_warn = np.zeros_like(img[:, :, 0]).astype(np.float)
        for bbox in window_list:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            cv2.rectangle(img, (startx, starty), (endx, endy), (200, 0, 0), 1)
        for bbox in warn_windows:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            heat_warn[starty:endy, startx:endx] += 1.
            cv2.rectangle(img, (startx, starty), (endx, endy), (0, 255, 0), 1)
        for bbox in stop_windows:
            startx = bbox[0][0]
            starty = bbox[0][1]
            endx = bbox[1][0]
            endy = bbox[1][1]
            heat_stop[starty:endy, startx:endx] += 1.
            cv2.rectangle(img, (startx, starty), (endx, endy), (0, 0, 255), 1)

        score_stop = np.max(heat_stop)
        score_warn = np.max(heat_warn)
        print '[scores] stop:' + str(score_stop) + ' warn:' + str(score_warn)

        # ---- GET DECISION ---- #
        decision = self.get_decision(score_stop, score_warn, numwin)

        # plot final decision region
        mapthresh = self.K_mapthresh * numwin
        labels = [None]
        if (decision == 1):
            heatmap_stop = heat_stop
            heatmap_stop[heatmap_stop <= mapthresh] = 0
            labels = label(heatmap_stop)
        elif (decision == 2):
            heatmap_warn = heat_warn
            heatmap_warn[heatmap_warn <= mapthresh] = 0
            labels = label(heatmap_warn)

        return decision, labels, img

    def get_decision(self, score_stop, score_warn, numwin):
        # decision thresholds and biases
        detthresh_stop = self.K_detthresh_stop * numwin
        detthresh_warn = self.K_detthresh_warn * numwin
        #stopbias = self.K_stopbias * numwin
        print 'numwin = ' + str(numwin) + ', detthreshSTOP = ' + str(
            detthresh_stop) + ', detthreshWARN = ' + str(detthresh_warn)
        # Make Decision

        if (score_stop >=
                detthresh_stop):  # and (score_stop + stopbias > score_warn):
            decision = 1
        elif (score_warn >= detthresh_warn):
            decision = 2
        else:
            decision = 0

        return decision

    def processOneFrame(self, img):
        # get decision for current frame
        dec, labels, draw_img = self.find_signs(img)
        # combine with previous results (if applicable)
        self.tracker.new_data(dec)
        final_decision = self.tracker.combined_results()

        # return results and output image
        return final_decision, draw_img
Пример #39
0
def main():

    # Create opencv video capture object
    cap = cv2.VideoCapture('G:/cmu/colonoscopy/New folder/Cold.mp4')
    #cap = cv2.VideoCapture('G:/cmu/colonoscopy/imagemark/Color-Tracker-master/Retroflect-at-end.mp4')

    # Create Object Detector
    detector = Detectors()

    # Create Object Tracker
    tracker = Tracker(160, 1000, 5, 100)

    # Variables initialization
    skip_frame_count = 0
    track_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0),
                    (0, 255, 255), (255, 0, 255), (255, 127, 255),
                    (127, 0, 255), (127, 0, 127)]
    pause = False
    num = 0
    frame_num = 0

    # Infinite loop to process video frames
    while (True):
        frame_num += 1
        print(frame_num)
        # Capture frame-by-frame
        ret, frame = cap.read()
        frame = frame[30:550, 400:930]
        #frame = frame[40:400,130:450]

        # Make copy of original frame
        orig_frame = copy.copy(frame)

        # Skip initial frames that display logo
        if (skip_frame_count < 15):
            skip_frame_count += 1
            continue

        # Detect and return centeroids of the objects in the frame
        centers = detector.Detect1(orig_frame)

        # If centroids are detected then track them
        if (len(centers) > 0):
            text = 'Biopsy'
            cv2.putText(orig_frame,
                        text, (100, 100),
                        cv2.FONT_HERSHEY_SIMPLEX,
                        1.0, (0, 0, 255),
                        2,
                        lineType=cv2.LINE_AA)
            # Track object using Kalman Filter
            tracker.Update(centers)

            # For identified object tracks draw tracking line
            # Use various colors to indicate different track_id
            for i in range(len(tracker.tracks)):
                if (len(tracker.tracks[i].trace) > 1):
                    for j in range(len(tracker.tracks[i].trace) - 1):
                        # Draw trace line
                        x1 = tracker.tracks[i].trace[j][0][0]
                        y1 = tracker.tracks[i].trace[j][1][0]
                        x2 = tracker.tracks[i].trace[j + 1][0][0]
                        y2 = tracker.tracks[i].trace[j + 1][1][0]
                        clr = tracker.tracks[i].track_id % 9
                        cv2.line(frame, (int(x1), int(y1)), (int(x2), int(y2)),
                                 track_colors[clr], 2)
            # Display the resulting tracking frame
            cv2.imshow('Tracking', frame)

        # Display the original frame
        cv2.imshow('Original', orig_frame)
        print(num)

        # Slower the FPS
        cv2.waitKey(20)

        # Check for key strokes
        k = cv2.waitKey(50) & 0xff
        if k == 27:  # 'esc' key has been pressed, exit program.
            break
        if k == 112:  # 'p' has been pressed. this will pause/resume the code.
            pause = not pause
            if (pause is True):
                print("Code is paused. Press 'p' to resume..")
                while (pause is True):
                    # stay in this loop until
                    key = cv2.waitKey(30) & 0xff
                    if key == 112:
                        pause = False
                        print("Resume code..!!")
                        break

    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()
Пример #40
0
def main():
    global args, device

    parser = argparse.ArgumentParser(
        description='Tracking Video Visualization')
    parser.add_argument('--video_path',
                        default='test_data/ohaqlzfnuv.mp4',
                        help='video path')
    parser.add_argument('--ground_truth', help='ground truth file path')
    parser.add_argument('--model',
                        default='models/SiamRPNOTB.model',
                        help='model path')
    parser.add_argument('--net_name',
                        type=str,
                        default='SiamRPNotb',
                        help='network, SiamRPNbatchOTBMobile, SiamRPNotb')
    parser.add_argument('--interval',
                        type=int,
                        default=-1,
                        help='initialize interval')
    parser.add_argument('--mode',
                        type=str,
                        default='test',
                        help='[test, eval]')
    parser.add_argument('--result_video', help='result video')
    parser.add_argument('--result_file',
                        default='saved_data/result.txt',
                        help='result file')
    parser.add_argument('-v',
                        '--visualization',
                        dest='visualization',
                        action='store_true',
                        help='whether visualize result')

    args = parser.parse_args()
    args.visualization = False

    tracker = Tracker(0, args.net_name, args.model)

    if args.mode == 'eval' and args.ground_truth is not None:
        with open(args.ground_truth) as f:
            labels = f.readlines()
        gt_rects = []
        for label in labels:
            label = re.split(';|,|\t| |, |; ', label.strip('\n'))
            label = list(map(int, label))
            gt_rects.append(label)

        # Todo: multi video test
        thresholds_overlap = np.arange(0, 1.05, 0.05)
        success_overlap = np.zeros(len(thresholds_overlap))
        fps, regions = eval_video(gt_rects, args.interval, tracker)
        gt_rects = get_none_rotation_rect(np.array(gt_rects))
        gt_rects = corner_to_rect(gt_rects)
        success_overlap = compute_success_overlap(gt_rects, np.array(regions))
        auc = success_overlap.mean()

        logging.info(
            'Mean Running AP:{:.4f} Mean Running Speed {:.1f}fps'.format(
                auc, fps))

    elif args.mode == 'test':
        assert (args.interval == -1)
        fps, regions = test_video(tracker)
        print(fps)
Пример #41
0
# object detection
img_size = (tracktor['width'], tracktor['height'])
backbone = resnet_fpn_backbone(tracktor['backbone'], True)
backbone.out_channels = 256
obj_detect = Jde_RCNN(backbone, num_ID=tracktor['num_ID'], min_size=img_size[1], max_size=img_size[0], version=tracktor['version'])
checkpoint = torch.load(tracktor['weights'], map_location='cpu')['model']
# if tracktor['version']=='v2':
#     checkpoint['roi_heads.embed_extractor.extract_embedding.weight'] = checkpoint['roi_heads.box_predictor.extract_embedding.weight']
#     checkpoint['roi_heads.embed_extractor.extract_embedding.bias'] = checkpoint['roi_heads.box_predictor.extract_embedding.bias']
print(obj_detect.load_state_dict(checkpoint, strict=False))

obj_detect.eval()
obj_detect.cuda()

tracker = Tracker(obj_detect, tracktor['tracker'])

transforms = T.Compose([T.ToTensor()])

time_total = 0
num_frames = 0
mot_accums = []

for seq_path in os.listdir(tracktor['dataset']):
    tracker.reset()

    start = time.time()

    print(f"Tracking: {seq_path}")
    sequence = LoadImagesAndLabels(root, osp.join(tracktor['dataset'], seq_path), img_size, augment=False, transforms=transforms)
    data_loader = DataLoader(sequence, batch_size=1, shuffle=False)
Пример #42
0
class Phaser(pyglet.window.Window):

    MODE_NORMAL = 0
    MODE_TRACING = 1
    MODE_CREATING = 2

    def __init__(self):
        super(Phaser, self).__init__(
            WIDTH,
            HEIGHT)  # config=pyglet.gl.Config(sample_buffers=1, samples=2))
        self.xdim = WIDTH
        self.ydim = HEIGHT
        self.load_fonts()

        self.gesture_sound = pyglet.media.StaticSource(
            pyglet.resource.media('gesture.wav'))

        # add the faders
        self.faders = []
        self.title_fader = Fader(0.1, 0.9)
        self.faders.append(self.title_fader)

        self.mouse = (0, 0)
        self.title_image = pyglet.font.Text(self.fonts[40], 'PhaseSeq')
        self.mode_image = pyglet.font.Text(self.fonts[30], 'Trace mode')
        self.show_saved_image = pyglet.font.Text(self.fonts[20],
                                                 'Showing saved traces')
        self.create_image = pyglet.font.Text(self.fonts[30],
                                             'Creating classifier')
        self.showinst_image = pyglet.font.Text(
            self.fonts[20], 'Press H to toggle instructions')

        instructions = 'To create a classifier:\n'
        instructions += '- Right click to begin\n'
        instructions += '- Left click to place first path segment\n'
        instructions += '- Left click again to extend path\n'
        instructions += '- Optionally use <A> and <D> to change width\n'
        instructions += '- Repeat until path complete\n'
        instructions += '- Right click to save\n'
        instructions += '(Press <U> to undo last point while drawing)\n\n'
        instructions += 'To preserve traces on screen:\n'
        instructions += '- Hold <Shift> and perform a movement\n'
        instructions += '- Release <Shift> to stop recording\n'
        instructions += '- Perform these steps as many times as needed\n'
        instructions += '- Press <T> to toggle showing all stored recordings\n'
        instructions += '- Press <X> to clear all stored recordings\n'
        instructions += '\nOther keybindings:\n'
        instructions += '<C> clears all saved classifiers\n'
        instructions += '<L> loads saved classifiers from file\n'
        instructions += '<S> saves current set of classifiers to file\n'
        self.inst_label = pyglet.text.Label(instructions,
                                            font_size=16,
                                            x=self.width / 2,
                                            y=self.height - 100,
                                            anchor_x='center',
                                            multiline=True,
                                            width=self.width * 0.75)

        self.phase_trace = []
        self.trace_len = 150

        self.sequences = []
        self.active_sequence = None
        self.saved_traces = []
        self.show_saved_traces = False

        self.extents = [-0.05, 1.1, -0.6, 0.6]
        self.thickness = 0.07

        self.tracker = Tracker(WIDTH, HEIGHT)

        self.mode = Phaser.MODE_NORMAL
        self.show_instructions = False

        self.import_sequences()

    def start_sequence(self):
        self.active_sequence = []

    def end_sequence(self):
        if len(self.active_sequence) > 1:
            self.sequences.append(
                TriPhaseSequence(
                    self.make_path(self.active_sequence, self.thickness)))
        self.active_sequence = None

    def import_sequences(self):
        if not os.path.exists(SEQUENCES_FILE):
            print('No existing sequences file found!')
            return

        self.sequences = []
        self.active_sequence = None

        with open(SEQUENCES_FILE, 'r') as f:
            seq_data = f.readlines()

        for sd in seq_data:
            points = []
            sd = sd.split(',')
            for i in range(0, len(sd), 6):
                t = map(float, sd[i:i + 6])
                points.append(((t[0], t[1]), (t[2], t[3]), (t[4], t[5])))
            self.sequences.append(TriPhaseSequence(points))

        print('Imported %d sequences' % (len(self.sequences)))

    def export_sequences(self):
        if len(self.sequences) == 0:
            print('No sequences to export')
            return

        print('Exporting %d sequences to %s' %
              (len(self.sequences), SEQUENCES_FILE))
        with open(SEQUENCES_FILE, 'w') as f:
            for j, s in enumerate(self.sequences):
                points = list(itertools.chain.from_iterable(s.states))
                for i, p in enumerate(points):
                    f.write('%f,%f' % p)
                    if i < len(points) - 1:
                        f.write(',')
                    else:
                        if j < len(self.sequences) - 1:
                            f.write('\n')
                print('Sequence exported (%d points)' % (len(points) / 3))

    def load_fonts(self):
        # load fonts
        self.fonts = {}
        pyglet.font.add_file("rez.ttf")
        for i in range(6, 41):
            self.fonts[i] = pyglet.font.load('Rez', i)

    def start(self):
        pyglet.clock.schedule_interval(self.update, 1 / 60.0)
        pyglet.app.run()
        self.export_sequences()

    def update(self, dt):
        """Frame update"""
        # update the faders, so they fade in and out
        for fader in self.faders:
            fader.update(dt)

        self.tracker.update(pos=self.mouse)

        n = len(self.tracker.the_object.d_seq)
        for d in self.tracker.the_object.d_seq:
            state = (d[0, 0], -d[0, 1] * 4)
            self.phase_trace.append(state)

            if self.mode == Phaser.MODE_NORMAL:
                for i, seq in enumerate(self.sequences):
                    seq.update(state[0], state[1], dt / n)

                    if seq.active == 1.0:
                        self.gesture_sound.play()
                        self.title_image = pyglet.font.Text(
                            self.fonts[40], 'Gesture %d' % i)
                        self.title_fader.reset()

        if self.mode != Phaser.MODE_TRACING and len(
                self.phase_trace) > self.trace_len:
            self.phase_trace = self.phase_trace[len(self.phase_trace) -
                                                self.trace_len:]

        self.draw()

    def draw_axes(self):
        w = 0.8 * self.extents[1]
        y1 = 0.7 * self.extents[2]
        y2 = 0.7 * self.extents[3]

        glLineWidth(3.0)

        glEnable(GL_BLEND)
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
        if self.mode == Phaser.MODE_TRACING:
            glColor4f(0.2, 0.9, 0.5, 0.3)
        else:
            glColor4f(0.2, 0.5, 0.9, 0.3)

        glBegin(GL_LINES)
        glVertex2f(0, y1)
        glVertex2f(0, y2)
        glVertex2f(0, 0)
        glVertex2f(w, 0)
        glEnd()

        if self.mode == Phaser.MODE_TRACING:
            glColor4f(0.2, 0.9, 0.6, 0.1)
            glBegin(GL_QUADS)
            glVertex2f(0, 0)
            glColor4f(0.2, 0.9, 0.6, 0.0)
            glVertex2f(0, y1)
            glVertex2f(w, y1)
            glColor4f(0.2, 0.9, 0.6, 0.1)
            glVertex2f(w, 0)
        else:
            glColor4f(0.2, 0.6, 0.9, 0.1)
            glBegin(GL_QUADS)
            glVertex2f(0, 0)
            glColor4f(0.2, 0.6, 0.9, 0.0)
            glVertex2f(0, y1)
            glVertex2f(w, y1)
            glColor4f(0.2, 0.6, 0.9, 0.1)
            glVertex2f(w, 0)
        glEnd()

        if self.mode == Phaser.MODE_TRACING:
            glColor4f(0.2, 0.9, 0.5, 0.4)
        else:
            glColor4f(0.2, 0.5, 0.9, 0.4)

        n = 10
        for i in range(n):
            x = w * ((i + 1) / float(n))
            glBegin(GL_LINES)
            glVertex2f(x, -0.01)
            glVertex2f(x, 0.01)
            glEnd()

        glLineWidth(1.0)

    def draw_trace(self):
        glBlendFunc(GL_SRC_ALPHA, GL_ONE)
        k = 1.0
        glLineWidth(3.0)
        glBegin(GL_LINE_STRIP)
        for vertex in reversed(self.phase_trace):
            if vertex:
                glColor4f(0.9, 0.7, 0.7, k)
                glVertex2f(vertex[0], vertex[1])
                if self.mode != Phaser.MODE_TRACING:
                    k = k * 0.95  #0.9
        glEnd()
        glLineWidth(1.0)

    def draw_tri(self, tri, color, phase=0):
        alpha = color[3]

        glColor4f(color[0], color[1], color[2], alpha)  #/2.0)
        glBegin(GL_TRIANGLES)
        glVertex2f(*tri[0])
        glVertex2f(*tri[1])
        glVertex2f(*tri[2])
        glEnd()

        # glBegin(GL_LINE_LOOP)

        # glColor4f(color[0], color[1], color[2], alpha)
        # glVertex2f(*tri[0])
        # glVertex2f(*tri[1])
        # glVertex2f(*tri[2])
        # glEnd()

    def draw_saved_traces(self):
        if not self.show_saved_traces:
            return

        glBlendFunc(GL_SRC_ALPHA, GL_ONE)
        glLineWidth(3.0)
        colours = [[0.9, 0.2, 0.2, 0.8], [0.2, 0.9, 0.2, 0.8],
                   [0.2, 0.2, 0.9, 0.8]]
        for i, st in enumerate(self.saved_traces):
            glBegin(GL_LINE_STRIP)
            glColor4f(*colours[i % 3])
            for j, vertex in enumerate(st):
                glVertex2f(vertex[0], vertex[1])
            glEnd()
        glLineWidth(1.0)

    def draw_sequences(self):
        for sequence in self.sequences:
            for i, elt in enumerate(sequence.states):
                if sequence.active > 0.1:
                    self.draw_tri(elt, (1, 1, 1, sequence.active))
                else:
                    if i == sequence.state:
                        self.draw_tri(elt,
                                      (0.6, 0.9, 0.6, sequence.trigger + 0.1))
                    else:
                        self.draw_tri(elt, (0.6, 0.9, 0.6, 0.25), phase=i)

        if self.active_sequence:
            self.draw_thick_line(self.active_sequence)

    def make_path(self, seq, thickness):
        """Convert a linear sequence to a set of triangles"""
        last = None
        last_l = None
        tris = []

        #if len(seq)>2:
        #    spl = spline.CardinalSpline(seq, tension=0.2)
        #    seq = [spl(x/3.0) for x in range(3*(len(seq)-1))]

        for pt in seq:
            if last:
                normal = geometry.normal(last, pt)
                strut = geometry.mul(normal, thickness)
                if not last_l:
                    last_r = (geometry.sub(strut, last))
                    last_l = (geometry.add(strut, last))

                tris.append((geometry.add(strut, pt), last_r, last_l))
                tris.append(
                    (geometry.add(strut, pt), geometry.sub(strut, pt), last_r))
                last_l = geometry.add(strut, pt)
                last_r = geometry.sub(strut, pt)

            last = pt
        return tris

    def draw_thick_line(self, seq):
        glColor4f(0.3, 0.8, 0.2, 0.5)

        if len(seq) == 1:
            glPointSize(4.0)
            glBegin(GL_POINTS)
            glVertex2f(*seq[0])
            glEnd()
            return

        tris = self.make_path(seq, self.thickness)

        for tri in tris:
            glBegin(GL_LINE_LOOP)
            for vertex in tri:
                glVertex2f(*vertex)
            glEnd()

    def draw_tracing_background(self):
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
        glBegin(GL_QUADS)
        glColor4f(0.33, 0.85, 0.26, 0.3)
        glVertex2f(0, 0)
        glColor4f(0.33, 0.85, 0.26, 0.3)
        glVertex2f(self.width, 0)
        glColor4f(0.55, 0.85, 0.46, 0.3)
        glVertex2f(self.width, self.height)
        glColor4f(0.55, 0.85, 0.46, 0.3)
        glVertex2f(0, self.height)
        glEnd()

    def draw_background(self):
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
        glBegin(GL_QUADS)
        glColor4f(0.02, 0.04, 0.12, 1)
        glVertex2f(0, 0)
        glColor4f(0.02, 0.04, 0.12, 1)
        glVertex2f(self.width, 0)
        glColor4f(0.03, 0.07, 0.22, 1)
        glVertex2f(self.width, self.height)
        glColor4f(0.13, 0.07, 0.22, 1)
        glVertex2f(0, self.height)
        glEnd()

    def draw(self):
        """Draw the entire screen"""
        glClearColor(0.02, 0.04, 0.12, 1)

        self.last_frame_time = time.clock()
        self.clear()
        if self.mode == Phaser.MODE_TRACING:
            self.draw_tracing_background()
        else:
            self.draw_background()

        glLoadIdentity()

        glMatrixMode(GL_PROJECTION)
        glPushMatrix()
        glLoadIdentity()
        glOrtho(self.extents[0], self.extents[1], self.extents[2],
                self.extents[3], -1, 1)
        glMatrixMode(GL_MODELVIEW)
        glLoadIdentity()

        self.draw_axes()
        self.draw_trace()
        self.draw_saved_traces()
        self.draw_sequences()

        glMatrixMode(GL_PROJECTION)
        glPopMatrix()
        glMatrixMode(GL_MODELVIEW)
        glLoadIdentity()
        self.draw_title()
        self.draw_mode()
        self.draw_instructions()

    def on_key_press(self, symbol, modifiers):
        if self.mode == Phaser.MODE_NORMAL and symbol == pyglet.window.key.LSHIFT or symbol == pyglet.window.key.RSHIFT:
            self.mode = Phaser.MODE_TRACING
            self.phase_trace = []
        pyglet.window.Window.on_key_press(self, symbol, modifiers)

    def on_key_release(self, symbol, modifiers):
        if symbol == pyglet.window.key.C:
            print('Clearing sequences')
            self.sequences = []
            self.active_sequence = None
            if os.path.exists(SEQUENCES_FILE):
                os.unlink(SEQUENCES_FILE)
        elif symbol == pyglet.window.key.A:
            self.thickness -= 0.01
            print('thickness =', self.thickness)
        elif symbol == pyglet.window.key.D:
            self.thickness += 0.01
            print('thickness =', self.thickness)
        elif self.mode == Phaser.MODE_TRACING and symbol == pyglet.window.key.LSHIFT or symbol == pyglet.window.key.RSHIFT:
            self.mode = Phaser.MODE_NORMAL
            self.saved_traces.append(self.phase_trace)
            self.phase_trace = []
        elif symbol == pyglet.window.key.S:
            self.export_sequences()
        elif symbol == pyglet.window.key.L:
            self.import_sequences()
        elif symbol == pyglet.window.key.H:
            self.show_instructions = not self.show_instructions
        elif symbol == pyglet.window.key.U:
            if self.mode == Phaser.MODE_CREATING:
                if len(self.active_sequence) > 1:
                    self.active_sequence = self.active_sequence[:-1]
                else:
                    self.end_sequence()
                    self.mode = Phaser.MODE_NORMAL

        elif symbol == pyglet.window.key.X:
            self.saved_traces = []
            print('cleared saved traces')
        elif symbol == pyglet.window.key.T:
            self.show_saved_traces = not self.show_saved_traces

    def on_mouse_motion(self, x, y, dx, dy):
        self.mouse = (x, y)

    def new_state(self, x, y):
        x = x / float(self.width)
        y = y / float(self.height)
        rx = (1 - x) * self.extents[0] + (x) * self.extents[1]
        ry = (1 - y) * self.extents[2] + (y) * self.extents[3]
        self.active_sequence.append((rx, ry))

    def on_mouse_release(self, x, y, button, modifiers):
        self.mouse = (x, y)

        # left mouse click adds new segment to current sequence
        if button == pyglet.window.mouse.LEFT and self.active_sequence != None:
            self.new_state(x, y)
            return

        # right mouse ends an active sequence...
        if (button == pyglet.window.mouse.RIGHT \
                or (button == pyglet.window.mouse.LEFT and modifiers & 2)) \
                and self.active_sequence != None:
            self.end_sequence()
            self.mode = Phaser.MODE_NORMAL
            return

        # ...or starts a new one
        if (button == pyglet.window.mouse.RIGHT \
                or (button == pyglet.window.mouse.LEFT and modifiers & 2)) \
                and self.active_sequence == None:
            self.start_sequence()
            self.mode = Phaser.MODE_CREATING
            self.new_state(x, y)
            return

    def draw_instructions(self):
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
        self.showinst_image.x = 10
        self.showinst_image.y = 30
        self.showinst_image.halign = 'left'
        self.showinst_image.valign = 'center'
        self.showinst_image.color = (1, 1, 1, 1)
        self.showinst_image.draw()
        if self.show_instructions:
            self.inst_label.draw()

    def draw_mode(self):
        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
        if self.mode == Phaser.MODE_TRACING:
            self.mode_image.x = self.width / 2
            self.mode_image.y = self.height - 40
            self.mode_image.halign = "center"
            self.mode_image.valign = "center"
            self.mode_image.color = (1, 1, 1, 1)
            self.mode_image.draw()
        elif self.mode == Phaser.MODE_CREATING:
            self.create_image.x = self.width / 2
            self.create_image.y = self.height - 40
            self.create_image.halign = "center"
            self.create_image.valign = "center"
            self.create_image.color = (1, 1, 1, 1)
            self.create_image.draw()

        if self.show_saved_traces:
            self.show_saved_image.x = self.width - 10
            self.show_saved_image.y = 30
            self.show_saved_image.halign = 'right'
            self.show_saved_image.valign = 'center'
            self.show_saved_image.color = (1, 1, 1, 1)
            self.show_saved_image.draw()

    def draw_title(self):
        """Draw the title, fading in and out"""
        k = self.title_fader.get()
        if k > 1e-3:
            glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
            self.title_image.x = self.width / 2
            self.title_image.y = self.height / 2
            self.title_image.halign = "center"
            self.title_image.valign = "center"
            self.title_image.color = (1, 1, 1, k)
            self.title_image.draw()
Пример #43
0
    input_dim = (384, 512, 3)
    K.set_learning_phase(0)  # 0 testing, 1 training mode

    field_width = 151
    field_height = 91
    radius = 5.5

    blob_min_width = 4
    blob_min_height = 4

    boundary_thresh = 75

    frame_start_time = None

    # Create object tracker
    tracker = Tracker(200, 4, 3, 1)

    hflip = 1
    vflip = 0
    if hflip and vflip:
        c = -1
    else:
        c = 0 if vflip else 1

    # Capture livestream
    cap = VideoCapture("http://192.168.43.1:8080/video")
    # cap = VideoCapture(0)

    ds = DataSender("127.0.0.1", 1835)
    dr = DataReciever("127.0.0.1", 1836)
Пример #44
0
    def __init__(self):
        super(Phaser, self).__init__(
            WIDTH,
            HEIGHT)  # config=pyglet.gl.Config(sample_buffers=1, samples=2))
        self.xdim = WIDTH
        self.ydim = HEIGHT
        self.load_fonts()

        self.gesture_sound = pyglet.media.StaticSource(
            pyglet.resource.media('gesture.wav'))

        # add the faders
        self.faders = []
        self.title_fader = Fader(0.1, 0.9)
        self.faders.append(self.title_fader)

        self.mouse = (0, 0)
        self.title_image = pyglet.font.Text(self.fonts[40], 'PhaseSeq')
        self.mode_image = pyglet.font.Text(self.fonts[30], 'Trace mode')
        self.show_saved_image = pyglet.font.Text(self.fonts[20],
                                                 'Showing saved traces')
        self.create_image = pyglet.font.Text(self.fonts[30],
                                             'Creating classifier')
        self.showinst_image = pyglet.font.Text(
            self.fonts[20], 'Press H to toggle instructions')

        instructions = 'To create a classifier:\n'
        instructions += '- Right click to begin\n'
        instructions += '- Left click to place first path segment\n'
        instructions += '- Left click again to extend path\n'
        instructions += '- Optionally use <A> and <D> to change width\n'
        instructions += '- Repeat until path complete\n'
        instructions += '- Right click to save\n'
        instructions += '(Press <U> to undo last point while drawing)\n\n'
        instructions += 'To preserve traces on screen:\n'
        instructions += '- Hold <Shift> and perform a movement\n'
        instructions += '- Release <Shift> to stop recording\n'
        instructions += '- Perform these steps as many times as needed\n'
        instructions += '- Press <T> to toggle showing all stored recordings\n'
        instructions += '- Press <X> to clear all stored recordings\n'
        instructions += '\nOther keybindings:\n'
        instructions += '<C> clears all saved classifiers\n'
        instructions += '<L> loads saved classifiers from file\n'
        instructions += '<S> saves current set of classifiers to file\n'
        self.inst_label = pyglet.text.Label(instructions,
                                            font_size=16,
                                            x=self.width / 2,
                                            y=self.height - 100,
                                            anchor_x='center',
                                            multiline=True,
                                            width=self.width * 0.75)

        self.phase_trace = []
        self.trace_len = 150

        self.sequences = []
        self.active_sequence = None
        self.saved_traces = []
        self.show_saved_traces = False

        self.extents = [-0.05, 1.1, -0.6, 0.6]
        self.thickness = 0.07

        self.tracker = Tracker(WIDTH, HEIGHT)

        self.mode = Phaser.MODE_NORMAL
        self.show_instructions = False

        self.import_sequences()
Пример #45
0
class TrackerClient(discord.Client):
    def __init__(self, *args, **kwargs):
        super(TrackerClient, self).__init__(*args, **kwargs)
        self.tracker = Tracker(self)
        self.no_track = []
        self.commands = {
            'ping': self.ping,
            'stats': self.stats,
            'track': self.track,
            'help': self.help,
            'chart': self.chart,
            'age': self.age_users
        }

        try:
            with open('DATA/USER_TRACKED.json', 'r') as f:
                self.no_track = json.load(f)
        except FileNotFoundError:
            with open('DATA/USER_TRACKED.json', 'w') as f:
                json.dump([], f)

    async def on_ready(self):
        print('Online now!')
        await client.change_presence(activity=discord.Game(
            name='@TrackerBot help'))

    async def send(self):
        async with aiohttp.ClientSession() as session:
            async with session.post(
                    'https://api.fusiondiscordbots.com/{}/'.format(
                        self.user.id),
                    data={
                        'token': 'rv:J-HuSELAfy0pb',
                        'guilds': len(self.guilds),
                        'members': len([x for x in self.get_all_members()])
                    }) as resp:
                print('returned {0.status} from api.fusiondiscordbots.com'.
                      format(resp))

    async def on_guild_join(self, *args):
        await self.send()

    async def on_guild_remove(self, *args):
        await self.send()

    async def on_message(self, message):
        if not await self.get_cmd(message):
            pass

    async def get_cmd(self, message):
        if self.user.id in map(
                lambda x: x.id,
                message.mentions) and len(message.content.split(' ')) > 1:
            if message.content.split(' ')[1] in self.commands.keys():
                await self.commands[message.content.split(' ')[1]](message)
                return True

            return False

        elif isinstance(message.channel, discord.DMChannel):
            if message.content.split(' ')[0] in self.commands.keys():
                await self.commands[message.content.split(' ')[0]](message)
                return True

            return False

    async def ping(self, message):
        t = message.created_at.timestamp()
        e = await message.channel.send('pong')
        delta = e.created_at.timestamp() - t
        await e.edit(content='Pong! {}ms round trip'.format(round(delta *
                                                                  1000)))

    async def stats(self, message):
        target = [
            x for x in message.content.split(' ')[1:] if x.startswith('<@')
        ]

        if len(target) > 0:
            target = target[0][1:-1]
            while target[0] not in '0123456789':
                try:
                    target = target[1:]
                except IndexError:
                    await message.channel.send(
                        'Error deciphering user tagged. Make sure it\'s formatted correctly!'
                    )
                    return

            target = self.get_user(int(target))
            if target is None:
                await message.channel.send(
                    'Couldn\'t find user tagged. Are you sure they\'re real and a patron?'
                )
                return

        else:
            target = message.author

        if self.tracker.getUser(target.id) is None:
            return

        em = discord.Embed(title='{}\'s stats'.format(target.name))
        for key, data in self.tracker.getUser(target.id).items():
            em.add_field(name=key,
                         value='{} minutes'.format(
                             round((data * self.tracker.INTERVAL) / 60)))
        await message.channel.send(embed=em)

    async def track(self, message):
        if 'disable' in message.content:
            await message.channel.send('Disabled tracking :thumbsup:')
            self.no_track.append(message.author.id)
        elif message.author.id in self.no_track:
            await message.channel.send('Enabled tracking :thumbsup:')
            self.no_track.remove(message.author.id)
        else:
            await message.channel.send(
                'Tracking is currently enabled for you. Use `track disable` to disable tracking'
            )

        with open('DATA/USER_TRACKED.json', 'w') as f:
            json.dump(self.no_track, f)

    async def help(self, message):
        await message.channel.send(embed=discord.Embed(description='''
`help` : Show this page
`stats [mention]` : Get online stats for a user
`track [disable]` : Enable or disable tracking for yourself
`chart [ignore="Offline,Online,GameName..."]` : Generate a pie chart of your activities
            '''))

    async def chart(self, message):
        user = self.tracker.getUser(message.author.id)

        ignore_list = []
        listing = False
        for i in message.content.split(' '):
            if i.startswith('ignore="'):
                ignore_list.append(i)
                listing = True
            elif listing:
                ignore_list.append(i)
            elif i[-1] == '"':
                ignore_list.append(i)
                listing = False
                break

        if len(ignore_list) > 0:
            ignore_list = ' '.join(ignore_list)
            listed = ignore_list.split('"')[1].replace('"', '').split(',')
            listed = [i.strip().lower() for i in listed]
            print(listed)
            user = {k: v for k, v in user.items() if k.lower() not in listed}

        pyplot.clf()
        pyplot.axis('equal')
        t = sum(user.values())
        pyplot.pie(user.values(),
                   labels=user.keys(),
                   autopct=lambda x: '{}mins'.format(
                       int((((x * t) / 100) * self.tracker.INTERVAL) / 60)))
        pyplot.savefig('curr.png')

        f = open('curr.png', 'rb')
        await message.channel.send(file=discord.File(f, 'chart.png'))
        f.close()

    async def Update(self):
        await client.wait_until_ready()
        while not client.is_closed():
            await self.tracker.Update()

            await asyncio.sleep(self.tracker.INTERVAL)

    async def age_users(self, message):
        users = [x for x in message.guild.members]
        users.sort(key=lambda x: x.created_at.timestamp())

        string = '\n'.join(
            map(
                lambda x: x.name + ' ' + x.created_at.strftime(
                    '%Y-%m-%d %H:%M:%S'), users))

        new_str = ''
        for i in string:
            new_str += i
            if len(new_str) > 1900:
                await message.channel.send(new_str)
                new_str = ''

        await message.channel.send(new_str)

    def get_patrons(self):
        try:
            p_server = self.get_guild(350391364896161793)
            p_server2 = self.get_guild(366542432671760396)
            p_roles = [
                discord.utils.get(p_server.roles, name='Donor'),
                discord.utils.get(p_server2.roles, name='Premium!')
            ]
            premiums = [
                user for user in itertools.chain(p_server.members,
                                                 p_server2.members)
                if any([p in user.roles for p in p_roles])
            ]

            return premiums

        except:
            return self.get_all_members()
Пример #46
0
class TorrentClient:
    """
    TorrentClient is a local peer which is responsible for managing connections
    to other peers to download and upload the data for the torrent.

    It makes periodic calls to the tracker registered to the torrent meta-info to get peer
    information for the torrent.

    Each received peer is stored in the queue from which the PeerConnection objects consume
    (maximum peer connections is defined by global MAX_PEER_CONNECTIONS variable).
    """

    def __init__(self, torrent):
        # Tracker object that defines methods to connect to the tracker
        self.tracker = Tracker(torrent)
        self.piece_manager = PieceManager(torrent)
        # Queue of potential peers which the PeerConnection objects will consume
        self.available_peers = asyncio.Queue()
        # List of PeerConnection objects which might be connected to the peer.
        # Else it is waiting to consume a peer from the available_peers queue
        self.peers = []
        self.abort = False

    async def start(self):
        """
        Start downloading the torrent data by connecting to the tracker and starting
        the workers
        """
        self.peers = [
            PeerConnection(
                self.available_peers,
                self.tracker.torrent.info_hash,
                self.tracker.peer_id,
                self.piece_manager,
                self._on_block_retrieved
            )
            for _ in range(MAX_PEER_CONNECTIONS)
        ]

        # Timestamp of the last announce call to the tracker
        previous_request = None
        # Default request interval (in sec) to tracker
        request_interval = 300  # sec

        while True:
            if self.abort:
                logging.warning("Aborting download")
                break

            if self.piece_manager.complete:
                logging.info("Download completed")
                break

            current_time = time.time()

            # Check if request_interval time has passed so make announce call to tracker
            if (not previous_request) or (previous_request + request_interval) < current_time:
                tracker_response = await self.tracker.connect(
                    first=previous_request if previous_request else False,
                    uploaded=self.piece_manager.bytes_uploaded,
                    downloaded=self.piece_manager.bytes_downloaded
                )

                if tracker_response:
                    logging.debug("Got tracker response")
                    previous_request = current_time
                    request_interval = tracker_response.interval
                    self._empty_queue()
                    for peer in tracker_response.peers:
                        if peer:
                            self.available_peers.put_nowait(peer)
            else:
                logging.warning("Waiting for next tracker announce call, interval is {request_interval}".format(
                    request_interval=request_interval))
                for peer in self.peers:
                    logging.debug("State of peer {id} is {status}".format(
                        id=peer.remote_id,
                        status=peer.my_state))
                await asyncio.sleep(5)
        self.stop()

    def stop(self):
        """
        Stop download and send stop signal to all peer objects
        """
        self.abort = True
        for peer in self.peers:
            peer.stop()
        self.piece_manager.close()
        self.tracker.close()

    def _empty_queue(self):
        """
        Remove all peers from the queue
        """
        while not self.available_peers.empty():
            self.available_peers.get_nowait()

    def _on_block_retrieved(self, peer_id, piece_index, block_offset, data):
        """
        Callback function passed to PeerConnection object called when block is
        retrieved from peer
        :param peer_id: The id of peer the block was retrieved from
        :param piece_index: The piece index of the block
        :param block_offset: Block offset inside the piece
        :param data: Binary block data
        :return:
        """
        self.piece_manager.block_received(
            peer_id=peer_id,
            piece_index=piece_index,
            block_offset=block_offset,
            data=data
        )
Пример #47
0
from tracker import Tracker, get_model_base_path

if args.benchmark > 0:
    model_base_path = get_model_base_path(args.model_dir)
    im = cv2.imread(os.path.join(model_base_path, "benchmark.bin"),
                    cv2.IMREAD_COLOR)
    results = []
    for model_type in [3, 2, 1, 0, -1]:
        tracker = Tracker(
            224,
            224,
            threshold=0.1,
            max_threads=args.max_threads,
            max_faces=1,
            discard_after=0,
            scan_every=0,
            silent=True,
            model_type=model_type,
            model_dir=args.model_dir,
            no_gaze=(model_type < 0),
            detection_threshold=0.1,
            use_retinaface=0,
            max_feature_updates=900,
            static_model=True if args.no_3d_adapt == 1 else False)
        tracker.detected = 1
        tracker.faces = [(0, 0, 224, 224)]
        total = 0.0
        for i in range(100):
            start = time.perf_counter()
            r = tracker.predict(im)
            total += time.perf_counter() - start
        print(1. / (total / 100.))
Пример #48
0
def main():
    api_id, api_hash, phone = extract_telegram_cfg(get_cfg())

    tr = Tracker(api_id=api_id, api_hash=api_hash, phone=phone)

    tr.start()
Пример #49
0
    def pcd_callback(self, msg):
        rospy.logwarn("Getting pcd at: %d.%09ds, (%d,%d)",
                      msg.header.stamp.secs, msg.header.stamp.nsecs,
                      msg.height, msg.width)

        pcd_original = pointcloud2_to_xyz_array(msg)

        pcd = PointCloud(pcd_original.T)

        self.plane, pcd_inlier, pcd_outlier = self.estimate_plane(pcd)
        transform_matrix, trans, rot, euler = get_transformation(
            frame_from='/velodyne',
            frame_to='/world',
            time_from=msg.header.stamp,
            time_to=msg.header.stamp,
            static_frame='/world',
            tf_listener=self.tf_listener,
            tf_ros=self.tf_ros)
        if not transform_matrix is None:
            plane_world_param = np.matmul(
                np.linalg.inv(transform_matrix).T,
                np.array(
                    [[self.plane.a, self.plane.b, self.plane.c,
                      self.plane.d]]).T)
            plane_world_param = plane_world_param / np.linalg.norm(
                plane_world_param[0:3])

            if self.plane_tracker is None:
                self.plane_tracker = Tracker(msg.header.stamp,
                                             plane_world_param)
            else:
                self.plane_tracker.predict(msg.header.stamp)
                self.plane_tracker.update(plane_world_param)
            print("plane_world:", plane_world_param.T)
            print("plane_traker:", self.plane_tracker.filter.x_post.T)

            # self.plane_world = Plane3D(plane_world_param[0,0], plane_world_param[1,0], plane_world_param[2,0], plane_world_param[3,0])
            self.plane_world = Plane3D(self.plane_tracker.filter.x_post[0, 0],
                                       self.plane_tracker.filter.x_post[1, 0],
                                       self.plane_tracker.filter.x_post[2, 0],
                                       self.plane_tracker.filter.x_post[3, 0])
            center_pos = np.matmul(
                transform_matrix,
                np.array([[
                    10, 0, (-self.plane.a * 10 - self.plane.d) / self.plane.c,
                    1
                ]]).T)
            center_pos = center_pos[0:3].flatten()
            # normal = np.matmul( transform_matrix, np.array([[0., 0., 1., 0.]]).T)
            # normal = normal[0:3]
            normal = None
            marker_array = self.create_and_publish_plane_markers(
                self.plane_world,
                frame_id='world',
                center=center_pos,
                normal=normal)
            self.pub_plane_markers.publish(marker_array)

        plane_msg = Plane()
        plane_msg.coef[0], plane_msg.coef[1], plane_msg.coef[
            2], plane_msg.coef[
                3] = self.plane.a, self.plane.b, self.plane.c, self.plane.d

        self.pub_plane.publish(plane_msg)

        # pcd_msg_inlier = create_point_cloud(pcd_inlier.T, frame_id='velodyne')
        # pcd_msg_outlier = create_point_cloud(pcd_outlier.T, frame_id='velodyne')
        pcd_msg_inlier = xyz_array_to_pointcloud2(pcd_inlier.T,
                                                  stamp=msg.header.stamp,
                                                  frame_id='velodyne')
        pcd_msg_outlier = xyz_array_to_pointcloud2(pcd_outlier.T,
                                                   stamp=msg.header.stamp,
                                                   frame_id='velodyne')
        self.pub_pcd_inlier.publish(pcd_msg_inlier)
        self.pub_pcd_outlier.publish(pcd_msg_outlier)

        rospy.logwarn("Finished plane estimation")
Пример #50
0
def test_tag_reset():
    t = Tracker(Board(5, 500, 500, 500, othelloAI()))
    t.bd.generate_board()
    t.bd.disks[1][1].halo_tag = True
    t.tag_reset()
    assert t.bd.disks[1][1].halo_tag is False
Пример #51
0
# window_name = [window for window in windows if key_word in window][0]

try:
    # initialize the WindowCapture class
    # wincap = WindowCapture(window_name)
    cap = cv.VideoCapture('mario.mp4')

    # load the trained models
    neutral_b = cv.CascadeClassifier('cascade_models/cascade_copy.xml')
    jab = cv.CascadeClassifier('cascade_models/jab.xml')
    sheild = cv.CascadeClassifier('cascade_models/sheild.xml')

    count = MoveCounter()
    t = TimeTracker()
    labels = MoveLabels()
    tracker = Tracker()

    # This stores the locations at which images are recognized.
    move_locs = {labels.neutral_b: [], labels.jab: [], labels.shield: []}

    mario_training_filter = HsvFilter(0, 5, 0, 179, 255, 255, 0, 17, 0, 0)

    # initialize vision class
    vision = Vision('')

    while (True):

        # get an updated image of the game
        # USE THIS IF YOU ARE USING SCREENCAPTURE
        # smash_screenshot = wincap.get_screenshot()
Пример #52
0
                else:
                    # Default
                    target_pos = [0.5, 0.5]
            except ValueError:
                # Default
                target_pos = [0.5, 0.5]
        else:
            # Default
            target_pos = [0.5, 0.5]
    else:
        # Default
        target_pos = [0.5, 0.5]

    time_step = 0.0001

    tracker = Tracker()
    #matlab_port = MatlabPort()
    pivot_threshold = 30
    forward_speed = 80
    navigator = Navigator()
    controller = Controller(time_step, forward_speed, pivot_threshold)

    target_heading = 0
    my_pos = [0, 0]


    motor_input = 3
    timer = time.time()

    while(not navigator.has_arrived()):
Пример #53
0
#!flask/bin/python
from flask import Flask, render_template, redirect, url_for, request, jsonify
from tracker import Tracker
from stravalib import Client

app = Flask(__name__)
app.config.from_envvar('APP_SETTINGS')

tracker = Tracker()


@app.route("/")
def login():
    c = Client()
    url = c.authorization_url(client_id=app.config['STRAVA_CLIENT_ID'],
                              redirect_uri=url_for('.logged_in',
                                                   _external=True),
                              approval_prompt='auto')
    return render_template('login.html', authorize_url=url)


@app.route("/strava-oauth")
def logged_in():
    """
    Method called by Strava (redirect) that includes parameters.
    - state
    - code
    - error
    """
    error = request.args.get('error')
    state = request.args.get('state')
Пример #54
0
def test_constructor():
    t = Tracker('Hi')
    assert t.bd == 'Hi'
    assert t.computer_moves == []
    assert t.tag_count == 0
def process_img(img):
    img = cv2.undistort(img, mtx, dist, None, mtx)
    preprocess_image = np.zeros_like(img[:,:,0])
    gradx = abs_sobel_thresh(img, orient='x', thresh=(12, 255))
    grady = abs_sobel_thresh(img, orient='y', thresh=(25, 255))

    c_binary = color_thresh(img, sthresh=(100, 255), vthresh=(50, 255))
    preprocess_image[((gradx == 1) & (grady == 1) | (c_binary == 1))] = 255

    img_size = (img.shape[1], img.shape[0])
    bot_width = .76
    mid_width = .08
    height_pct = .62
    bottom_trim = .935
    src = np.float32([
        [img.shape[1]*(.5-mid_width/2), img.shape[0]*height_pct],
        [img.shape[1]*(.5+mid_width/2), img.shape[0]*height_pct],
        [img.shape[1]*(.5+bot_width/2), img.shape[0]*bottom_trim],
        [img.shape[1]*(.5-bot_width/2), img.shape[0]*bottom_trim],
    ])
    offset = img.shape[1]*.25
    dst = np.float32([
        [offset, 0],
        [img.shape[1]-offset, 0],
        [img.shape[1]-offset, img.shape[0]],
        [offset, img.shape[0]]
    ])
    M = cv2.getPerspectiveTransform(src, dst)
    Minv = cv2.getPerspectiveTransform(dst, src)
    warped = cv2.warpPerspective(preprocess_image, M, img_size, flags=cv2.INTER_LINEAR)

    window_width = 25
    window_height = 80
    curve_centers = Tracker(Mywindow_width=window_width, Mywindow_height=window_height, Mymargin=25, My_ym=10/720, My_xm=4/384, Mysmooth_factor=15)

    window_centroids = curve_centers.find_window_centroids(warped)

    l_points = np.zeros_like(warped)
    r_points = np.zeros_like(warped)

    leftx = []
    rightx = []

    for level in range(len(window_centroids)):
        leftx.append(window_centroids[level][0])
        rightx.append(window_centroids[level][1])
        l_mask = window_mask(window_width, window_height, warped, window_centroids[level][0], level)
        r_mask = window_mask(window_width, window_height, warped, window_centroids[level][1], level)

        l_points[(l_points == 255) | (l_mask == 1)] = 255
        r_points[(r_points == 255) | (r_mask == 1)] = 255

    # Draw
    # template = np.array(r_points+l_points, np.uint8)
    # zero_channel=np.zeros_like(template)
    # template = np.array(cv2.merge((zero_channel, template, zero_channel)), np.uint8)
    # warpage = np.array(cv2.merge((warped, warped, warped)), np.uint8)
    # result = cv2.addWeighted(warpage, 1, template, 0.5, 0.0)
    # result = warped

    yvals = range(0, warped.shape[0])
    res_yvals = np.arange(warped.shape[0]-(window_height/2), 0, -window_height)

    left_fit = np.polyfit(res_yvals, leftx, 2)
    left_fitx = left_fit[0]*yvals*yvals + left_fit[1]*yvals + left_fit[2]
    left_fitx = np.array(left_fitx, np.int32)

    right_fit = np.polyfit(res_yvals, rightx, 2)
    right_fitx = right_fit[0]*yvals*yvals + right_fit[1]*yvals + right_fit[2]
    right_fitx = np.array(right_fitx, np.int32)

    left_lane = np.array(list(zip(np.concatenate((left_fitx-window_width/2,left_fitx[::-1]+window_width/2), axis=0),
                                  np.concatenate((yvals, yvals[::-1]), axis=0))), np.int32)
    right_lane = np.array(list(zip(np.concatenate((right_fitx-window_width/2,right_fitx[::-1]+window_width/2), axis=0),
                                  np.concatenate((yvals, yvals[::-1]), axis=0))), np.int32)
    inner_lane = np.array(list(zip(np.concatenate((left_fitx+window_width/2,right_fitx[::-1]-window_width/2), axis=0),
                                  np.concatenate((yvals, yvals[::-1]), axis=0))), np.int32)

    road = np.zeros_like(img)
    road_bkg = np.zeros_like(img)
    cv2.fillPoly(road, [left_lane], color=[255, 0,0])
    cv2.fillPoly(road, [right_lane], color=[0, 0, 255])
    cv2.fillPoly(road, [inner_lane], color=[0, 255, 0])
    cv2.fillPoly(road_bkg, [left_lane], color=[255, 255, 255])
    cv2.fillPoly(road_bkg, [right_lane], color=[255, 255, 255])

    road_warped = cv2.warpPerspective(road, Minv, img_size, flags=cv2.INTER_LINEAR)
    road_warped_bkg = cv2.warpPerspective(road_bkg, Minv, img_size, flags=cv2.INTER_LINEAR)

    base = cv2.addWeighted(img, 1.0, road_warped_bkg, -1.0, 0.0)
    result = cv2.addWeighted(base, 1.0, road_warped, .7, 0.0)

    ym_per_pix = curve_centers.ym_per_pix
    xm_per_pix= curve_centers.xm_per_pix

    curve_fit_cr = np.polyfit(np.array(res_yvals,np.float32)*ym_per_pix, np.array(leftx, np.float32)*xm_per_pix, 2)
    curverad = ((1 + (2*curve_fit_cr[0]*yvals[-1]*ym_per_pix + curve_fit_cr[1])**2)**1.5) / np.absolute(2*curve_fit_cr[0])
    camera_center = (left_fitx[-1] + right_fitx[-1])/2
    center_diff = (camera_center-warped.shape[1]/2)*xm_per_pix
    side_pos = 'left'
    if center_diff <=0:
        side_pos = 'right'

    cv2.putText(result, 'Radius of Curvature = '+str(round(curverad, 3))+'(m)',(50,50),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2)
    cv2.putText(result, 'Vehicle is '+str(abs(round(center_diff, 3)))+'m '+side_pos+' of center',(50,100),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),2)

    return result
Пример #56
0
def run_camera(input_shape, model):
    num_classes = 21
    conf_thresh = 0.5
    bbox_util = BBoxUtility(num_classes)
    vid = cv2.VideoCapture(0)
    sleep(1.0)
    # Compute aspect ratio of video
    vidw = vid.get(cv2.CAP_PROP_FRAME_WIDTH)
    vidh = vid.get(cv2.CAP_PROP_FRAME_HEIGHT)
    trackers = Tracker()
    while True:
        ret, origin_image = vid.read()
        frame = origin_image
        if not ret:
            print("Done!")
            return None
        im_size = (input_shape[0], input_shape[1])
        resized = cv2.resize(frame, im_size)
        rgb = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB)

        inputs = [image.img_to_array(rgb)]
        tmp_inp = np.array(inputs)
        x = preprocess_input(tmp_inp)
        y = model.predict(x)
        results = bbox_util.detection_out(y)
        if len(results) > 0 and len(results[0]) > 0:
            det_label = results[0][:, 0]
            det_conf = results[0][:, 1]
            det_xmin = results[0][:, 2]
            det_ymin = results[0][:, 3]
            det_xmax = results[0][:, 4]
            det_ymax = results[0][:, 5]

            top_indices = [i for i, conf in enumerate(det_conf) if conf >= conf_thresh]

            top_conf = det_conf[top_indices]
            top_label_indices = det_label[top_indices].tolist()
            top_xmin = det_xmin[top_indices]
            top_ymin = det_ymin[top_indices]
            top_xmax = det_xmax[top_indices]
            top_ymax = det_ymax[top_indices]

            if 15 not in top_label_indices:
                pass
            else:
                trackers.bbox = []
                trackers.features_current = []
                trackers.index = []
                for i in range(top_conf.shape[0]):
                    class_num = int(top_label_indices[i])
                    if class_num == 15:
                        xmin = int(round((top_xmin[i] * vidw) * 0.9))
                        ymin = int(round((top_ymin[i] * vidh) * 0.9))
                        xmax = int(round((top_xmax[i] * vidw) * 1.1)) if int(round(
                            (top_xmax[i] * vidw)) * 1.1) <= vidw else int(round(
                            top_xmax[i] * vidw))
                        ymax = int(round((top_ymax[i] * vidh) * 1.1)) if int(round(
                            (top_ymax[i] * vidh) * 1.1)) <= vidh else int(round(top_ymax[i] * vidh))
                        trackers.bbox.append([xmin, ymin, xmax, ymax])
                        trackers.features_current.append(
                            Extract_feature(cv2.resize(frame[ymin:ymax, xmin:xmax, :], (32, 32))))
                if trackers.features_previous is None:
                    trackers.index.append(i for i in range(len(trackers.bbox)))
                    for j in range(len(trackers.features_current)):
                        cv2.rectangle(frame, (int(trackers.bbox[j][0]), int(trackers.bbox[j][1])),
                                      (int(trackers.bbox[j][2]), int(trackers.bbox[j][3])), (255, 0, 0), 2)
                        cv2.putText(frame, "person: {}".format(trackers.index[j] + 1),
                                    (trackers.bbox[j][0] + 10, trackers.bbox[j][1] + 10),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)
                else:
                    trackers.match()
                    trackers.update()
                    for j in range(len(trackers.features_current)):
                        cv2.rectangle(frame, (int(trackers.bbox[j][0]), int(trackers.bbox[j][1])),
                                      (int(trackers.bbox[j][2]), int(trackers.bbox[j][3])), (255, 0, 0), 2)
                        cv2.putText(frame, "person: {}".format(trackers.index[j] + 1),
                                    (trackers.bbox[j][0] + 10, trackers.bbox[j][1] + 10),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)
        cv2.imshow('tracking', frame)
        if cv2.waitKey(5) & 0xFF == ord('q'):
            break
Пример #57
0
        for w in self.arc_weights:
            s+="w"
            s+=str(w)
        for b in self.biases:
            s+="b"
            s+=str(b)
        for g in self.gains:
            s+="g"
            s+=str(g)
        for t in self.time_constants:
            s+="t"
            s+=str(t)
        s+=")"
        return s
        
    def __repr__(self):
        return self.__str__()
        
#Develop a single parameter, from the binary list representing it to a float.    
def dev_parameter(glist, start, stop, binlim, lim):
    return ((int( "".join(glist[start:stop]), 2 )*1.0/binlim)*lim)  

if __name__ == '__main__':
    beer = Beer()
    beer.development()
    print beer
    print beer.ann
    print beer.ann.arcs
    tracker = Tracker(beer.ann)
    tracker.run()
    
Пример #58
0
def main():

    ### GET LIST OF INPUT FILES FROM STORAGE CONTAINER FOR SPARK TO READ
    # Read from config files
    storage_config = ConfigReader("config.cfg", "azure-storage").get_config()
    db_config = ConfigReader("config.cfg", "postgres").get_config()

    # Get Azure storage info from config
    storage_acct_name = storage_config["account_name"]
    storage_acct_access_key = storage_config["access_key"]
    storage_container = storage_config["container_name"]
    mount_root = storage_config["mount_root"]

    # Set Spark Azure storage account and key
    storage_acct_key_str = f"fs.azure.account.key.{storage_acct_name}.blob.core.windows.net"

    # Strings for setting accessing filenames from storage
    file_type = "txt"
    input_dir = "data"
    file_suffix = f".{file_type}"
    suffix_len = len(file_suffix)
    mount_base_path = f"{mount_root}/{storage_container}"

    # Set up container client
    blob_service_client = BlobServiceClient(account_url=f"https://{storage_acct_name}.blob.core.windows.net", \
        credential=storage_acct_access_key)
    container_client = blob_service_client.get_container_client(
        storage_container)

    # Get list of file names
    blob_list = container_client.list_blobs(name_starts_with=input_dir)
    txtfile_paths = [
        blob.name for blob in blob_list
        if blob.name[-suffix_len:] == file_suffix
    ]
    txtfile_full_paths = [
        f"{mount_base_path}/{file}" for file in txtfile_paths
    ]

    ### SET UP SPARK SESSION AND RUN THROUGH STEPS
    # Start spark session and set up storage account key
    spark = SparkSession.builder.getOrCreate()
    spark.conf.set(storage_acct_key_str, storage_acct_access_key)

    steps = []
    step_1 = PipelineStep1("Step 1: Ingest",
                           spark=spark,
                           mount_base_path=mount_base_path,
                           input_path=",".join(txtfile_full_paths),
                           output_path=f"{mount_base_path}/ingested-data")
    steps.append(step_1)

    step_2 = PipelineStep2("Step 2: Preprocess",
                           spark=spark,
                           mount_base_path=mount_base_path,
                           input_path=step_1.output_path,
                           output_path=f"{mount_base_path}/preprocessed-data")
    steps.append(step_2)

    step_3 = PipelineStep3("Step 3: ETL",
                           spark=spark,
                           mount_base_path=mount_base_path,
                           input_path=step_2.output_path,
                           output_path=f"{mount_base_path}/ETL-output")
    steps.append(step_3)

    # Attempt each step and insert results into db table
    job_ids = []
    for step in steps:
        tracker = Tracker(job_name=step.name, db_config=db_config)
        job_ids.append(tracker.job_id)
        try:
            step.run()
            tracker.update_job_status("Success")
        except Exception as e:
            print(e)
            tracker.update_job_status("Failed")
import sys
import os.path
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))

import socket
from tracker import Tracker
import pysocket
p = pysocket.Pysocket()
t = Tracker((p.get_lan_ip(), 50000))
t.run()
Пример #60
0
    def tracking(self,
                 trackers,
                 dboxes,
                 features,
                 appts,
                 fid,
                 mtracker_id,
                 dist_th=0.1,
                 iou_th=0.5,
                 dist_resume_th=0.1,
                 resume_times_th=10,
                 area_th=2,
                 iou_th_single=0.75,
                 no_detection_frames_th=50,
                 other_overlap_th=0.15,
                 is_oks=True):
        ntrackers = trackers
        nmtracker_id = mtracker_id
        # Hungarian algorithm
        # valid trackers number
        vtn = 0
        # key is valid trackers sequence id, value is all trackers sequence id
        valid_id = {}
        for i, tracker in enumerate(trackers):
            if tracker.state == 0:
                continue
            valid_id[vtn] = i
            vtn += 1
        # valid tracker is existed
        if vtn > 0:
            dist_matrix = np.ones((len(dboxes), vtn))
            iou_matrix = np.ones((len(dboxes), vtn))
            oks_matrix = np.ones((len(dboxes), vtn))
            for i, dbox in enumerate(dboxes):
                feature = features[i]
                dvtn = 0
                for tracker in trackers:
                    if tracker.state == 0:
                        continue
                    iou = compute_iou(tracker.latest_box[:4], dbox[:4])
                    iou_matrix[i, dvtn] = iou
                    if is_oks:
                        # oks = oks_iou(np.array(tracker.pose_pts[:17]), np.array(appts[i][:17]),
                        #     calc_area(tracker.latest_box), calc_area(dbox))
                        oks = oks_iou(np.array(tracker.pose_pts[:17]),
                                      np.array(appts[i][:17]),
                                      calc_area(tracker.latest_box),
                                      calc_area(dbox),
                                      in_vis_thre=0.05)
                        oks_matrix[i, dvtn] = oks
                    # calculate feature distance
                    distance = GetDis(tracker.mfeature, feature)
                    dist_matrix[i, dvtn] = distance
                    dvtn += 1
            # Hungarian algorithm, dist matrix
            row_ind, col_ind = linear_sum_assignment(dist_matrix)
            rind = row_ind.tolist()
            cind = col_ind.tolist()
            # Hungarian algorithm, iou matrix
            if is_oks:
                iou_matrix = oks_matrix
            row_ind, col_ind = linear_sum_assignment(iou_matrix, maximize=True)
            # rind_iou = row_ind.tolist()
            cind_iou = col_ind.tolist()

            # # Hungarian algorithm, iou matrix
            # row_ind, col_ind = linear_sum_assignment(oks_matrix, maximize=True)
            # # rind_iou = row_ind.tolist()
            # cind_oks = col_ind.tolist()

            # determine which is dependent, which is not
            # which box has been updated
            dbox_markers = [0] * len(dboxes)
            # which tracker has been updated
            tracker_markers = [0] * len(trackers)
            # which valid tracker has been updated
            valid_tracker_markers = [0] * vtn
            for i, ri in enumerate(rind):
                ci = cind[i]
                distance = dist_matrix[ri, ci]
                # ri of rind and rind_iou is same
                ci_iou = cind_iou[i]
                iou = iou_matrix[ri, ci_iou]
                # if distance < dist_th:
                if ci == ci_iou and distance < dist_th * 1.5 and iou > iou_th / 2:
                    ti = valid_id[ci]
                    dbox = dboxes[ri]
                    feature = features[ri]
                    appt = appts[ri]
                    # dbox overlap with other tracker
                    is_other_overlap = False
                    ri_iou_list = iou_matrix[ri, :].tolist()
                    for idx, ri_iou in enumerate(ri_iou_list):
                        if idx == ci_iou:
                            continue
                        if ri_iou > other_overlap_th:
                            is_other_overlap = True
                            break
                    trackers[ti].update(dbox,
                                        fid,
                                        feature,
                                        appt,
                                        is_track=False,
                                        is_other_overlap=is_other_overlap)
                    dbox_markers[ri] = 1
                    tracker_markers[ti] = 1
                    valid_tracker_markers[ci] = 1
                    continue
                elif ci != ci_iou and iou > iou_th and dist_matrix[
                        ri, ci_iou] < dist_th:
                    ti = valid_id[ci_iou]
                    dbox = dboxes[ri]
                    feature = features[ri]
                    appt = appts[ri]
                    # dbox overlap with other tracker
                    is_other_overlap = False
                    ri_iou_list = iou_matrix[ri, :].tolist()
                    for idx, ri_iou in enumerate(ri_iou_list):
                        if idx == ci_iou:
                            continue
                        if ri_iou > other_overlap_th:
                            is_other_overlap = True
                            break
                    trackers[ti].update(dbox,
                                        fid,
                                        feature,
                                        appt,
                                        is_track=False,
                                        is_other_overlap=is_other_overlap)
                    dbox_markers[ri] = 1
                    tracker_markers[ti] = 1
                    valid_tracker_markers[ci_iou] = 1
                    continue
                elif ci != ci_iou and distance < dist_th and iou_matrix[
                        ri, ci] > iou_th:
                    ti = valid_id[ci]
                    dbox = dboxes[ri]
                    feature = features[ri]
                    appt = appts[ri]
                    # dbox overlap with other tracker
                    is_other_overlap = False
                    ri_iou_list = iou_matrix[ri, :].tolist()
                    for idx, ri_iou in enumerate(ri_iou_list):
                        if idx == ci:
                            continue
                        if ri_iou > other_overlap_th:
                            is_other_overlap = True
                            break
                    trackers[ti].update(dbox,
                                        fid,
                                        feature,
                                        appt,
                                        is_track=False,
                                        is_other_overlap=is_other_overlap)
                    dbox_markers[ri] = 1
                    tracker_markers[ti] = 1
                    valid_tracker_markers[ci] = 1
                    continue

            # add logic, try to match killed tracker
            ktn = 0
            # key is valid trackers sequence id, value is all trackers sequence id
            killed_id = {}
            for i, tracker in enumerate(trackers):
                if tracker.state != 0 or (fid - tracker.latest_fid) > max(
                        50, self.drate * resume_times_th):
                    # if tracker.state != 0:
                    continue
                killed_id[ktn] = i
                ktn += 1
            if dbox_markers.count(0) != 0 and ktn != 0:
                dist_matrix_resume = np.ones((dbox_markers.count(0), ktn))
                kdm = 0
                # key is unmatched dbox idx, value is dboxes idx
                unmatched_dbox_id = {}
                for i, dm in enumerate(dbox_markers):
                    if dm != 0:
                        continue
                    unmatched_dbox_id[kdm] = i
                    dbox = dboxes[i]
                    # try to match
                    feature = features[i]
                    dktn = 0
                    for j, tracker in enumerate(trackers):
                        if tracker.state != 0 or (
                                fid - tracker.latest_fid) > max(
                                    50, self.drate * resume_times_th):
                            # if tracker.state != 0:
                            continue
                        # calculate feature distance
                        distance = GetDis(tracker.mfeature, feature)
                        dist_matrix_resume[kdm, dktn] = distance
                        dktn += 1
                    kdm += 1
                # Hungarian algorithm
                row_ind, col_ind = linear_sum_assignment(dist_matrix_resume)

                rind = row_ind.tolist()
                cind = col_ind.tolist()
                for i, ri in enumerate(rind):
                    ci = cind[i]
                    distance = dist_matrix_resume[ri, ci]
                    # similarity must be very high
                    if distance < dist_resume_th:
                        ti = killed_id[ci]
                        di = unmatched_dbox_id[ri]
                        dbox = dboxes[di]
                        feature = features[di]
                        appt = appts[di]

                        # area compare
                        darea = calc_area(dbox)
                        latest_box = trackers[ti].latest_box
                        larea = calc_area(latest_box)
                        # predict box compare
                        latest_fid = trackers[ti].latest_fid
                        delta_fid = fid - latest_fid
                        pred_velocity = trackers[ti].pred_velocity
                        vof = [
                            pred_velocity[0] * delta_fid,
                            pred_velocity[1] * delta_fid
                        ]
                        pbox = [
                            int(latest_box[0] + vof[0]),
                            int(latest_box[1] + vof[1]),
                            int(latest_box[2] + vof[0]),
                            int(latest_box[3] + vof[1])
                        ]
                        iou = compute_iou(dbox[:4], pbox)
                        # resume or not
                        if min(darea, larea) * area_th > max(
                                darea, larea) and iou > 0.001:
                            trackers[ti].resume()
                            trackers[ti].update(dbox,
                                                fid,
                                                feature,
                                                appt,
                                                is_track=False)
                            dbox_markers[di] = 1
                            tracker_markers[ti] = 1

            # new tracker
            for i, dm in enumerate(dbox_markers):
                if dm != 0:
                    continue
                # new tracker, using valid_tracker_markers info
                iou_list = iou_matrix[i, :].tolist()
                dist_list = dist_matrix[i, :].tolist()
                mark = True
                marked_vtm = {}
                vcid = None
                for cid, vtm in enumerate(valid_tracker_markers):
                    # tracker not matched before and iou is large
                    if vtm == 0 and (iou_list[cid] > iou_th or
                                     (iou_list[cid] > 0.01
                                      and dist_list[cid] < dist_th / 2)):
                        mark = False
                        vcid = cid
                        break
                    # iou area / dbox or iou area / tracker.latest_box is high
                    if vtm == 0:
                        ti = valid_id[cid]
                        dbox = dboxes[i]
                        latest_box = trackers[ti].latest_box
                        iou, area, darea, lbarea = compute_iou(
                            dbox[:4], latest_box[:4], True)
                        # if dist_list[cid] < dist_th and (area / darea > iou_th_single or area / lbarea > iou_th):
                        # seems overlap area in tracker cannot be too large, so using a smaller thresholld, as the detected box will be changed (part/full)
                        diou = area / darea
                        lbiou = area / lbarea
                        if diou > iou_th_single or lbiou > iou_th:
                            mark = False
                            # not creedy, otherwise mis-match
                            marked_vtm[cid] = diou + lbiou
                if not mark:
                    if len(marked_vtm) != 0:
                        vcid = sorted(marked_vtm.items(),
                                      key=lambda item: item[1],
                                      reverse=True)[0][0]
                    ti = valid_id[vcid]
                    dbox = dboxes[i]
                    feature = features[i]
                    appt = appts[i]
                    # dbox overlap with other tracker
                    is_other_overlap = False
                    ri_iou_list = iou_list
                    for idx, ri_iou in enumerate(ri_iou_list):
                        if idx == ti:
                            continue
                        if ri_iou > other_overlap_th:
                            is_other_overlap = True
                            break
                    trackers[ti].update(dbox,
                                        fid,
                                        feature,
                                        appt,
                                        is_track=False,
                                        is_other_overlap=is_other_overlap)
                    valid_tracker_markers[vcid] = 1
                else:
                    # new tracker
                    nmtracker_id += 1
                    nt = Tracker(nmtracker_id)
                    dbox = dboxes[i]
                    feature = features[i]
                    appt = appts[i]
                    nt.update(dbox, fid, feature, appt, is_track=False)
                    ntrackers.append(nt)
            # mark which tracker is not be detected
            for i, tm in enumerate(tracker_markers):
                if tm != 0 or ntrackers[i].state == 0:
                    continue
                ntrackers[i].update_no_detection_times()
                # ntrackers[i].update_no_detection_times(no_detection_frames_th // self.drate)
        else:
            # new tracker
            for i, dbox in enumerate(dboxes):
                nmtracker_id += 1
                nt = Tracker(nmtracker_id)
                feature = features[i]
                appt = appts[i]
                nt.update(dbox, fid, feature, appt, is_track=False)
                ntrackers.append(nt)
        return ntrackers, nmtracker_id