Пример #1
0
    def opt_func(sig_t_fs, count_nfev):
        global ctr, sp_ctr, plot_ctr, sp, nfev_ctr

        sig_t = sig_t_fs / 1e15

        bp_wake = tracking.get_gaussian_profile(sig_t, tt_halfrange,
                                                len_profile, charge,
                                                tracker.energy_eV)
        screen_recon = tracker.back_and_forward(meas_screen,
                                                meas_screen0,
                                                bp_wake,
                                                gaps,
                                                beam_offsets,
                                                n_streaker,
                                                n_bins,
                                                back_cutoff=0.1)
        screen_max_x = screen_recon.x[np.argmax(screen_recon.intensity)]
        screen_shift = tracking.ScreenDistribution(
            screen_recon.x - screen_max_x, screen_recon.intensity.copy())
        screen_shift.cutoff(0.1)

        diff = screen_shift.compare(meas_screen_shift)

        print(ctr, '%f fs' % sig_t_fs, '%.1e' % diff)
        ctr += 1

        if plot_ctr == 5:
            plot_ctr = 0
            if sp_ctr == 7:
                ms.figure('Optimization bo %.1e' % beam_offset0)
                sp_ctr = 1
            sp = subplot(sp_ctr, title='Profile')
            sp_ctr += 1
            sp.plot(meas_screen_shift.x * 1e3,
                    meas_screen_shift.intensity,
                    label='Original')

        plot_ctr += 1
        sp.plot(screen_shift.x * 1e3,
                screen_shift.intensity,
                label='%i: %.1f fs %.3e' % (ctr, sig_t_fs, diff))
        sp.legend()
        plt.show()
        plt.pause(0.01)

        if count_nfev:
            nfev_ctr += 1
            if nfev_ctr > max_nfev:
                raise StopIteration(sig_t_fs)

        opt_func_values.append((float(sig_t), diff))

        return diff
Пример #2
0
        timestamp0 = misc.get_timestamp(os.path.basename(p_dict['filename0']))
        tracker0 = tracking.Tracker(magnet_file,
                                    timestamp0,
                                    struct_lengths,
                                    n_particles,
                                    n_emittances,
                                    screen_bins,
                                    screen_cutoff,
                                    smoothen,
                                    profile_cutoff,
                                    len_profile,
                                    quad_wake=quad_wake)

        bp_test = tracking.get_gaussian_profile(40e-15, tt_halfrange,
                                                len_profile, charge,
                                                tracker0.energy_eV)
        screen_sim = tracker0.matrix_forward(bp_test, [10e-3, 10e-3],
                                             [0, 0])['screen']
        all_emittances = []
        all_beamsizes = []
        for proj in projx0:
            screen_meas = get_screen_from_proj(proj, x_axis0, invert_x0)
            all_beamsizes.append(screen_meas.gaussfit.sigma)
            emittance_fit = misc.fit_nat_beamsize(screen_meas,
                                                  screen_sim,
                                                  n_emittances[0],
                                                  smoothen,
                                                  print_=False)
            #print(screen_meas.gaussfit.sigma)
            all_emittances.append(emittance_fit)
Пример #3
0
def main():
    fig_paper = ms.figure('Comparison plots')
    subplot = ms.subplot_factory(2, 2)
    sp_ctr_paper = 1

    #images0 = dict0['projx'][-1]
    #x_axis = dict0['x_axis']*1e-6

    #if np.diff(x_axis)[0] < 0:
    #    x_axis = x_axis[::-1]
    #    invert_x = True
    #else:
    #    invert_x = False

    process_dict = {
        'Long': {
            'filename': file38,
            'main_dict': dict38,
            'proj0': dict0['projx'][-1],
            'x_axis0': dict0['x_axis'] * 1e-6,
            'n_offset': None,
            'filename0': file0,
            'blmeas': blmeas38,
            'flipx': False,
        },
        'Medium': {
            'filename': file25,
            'main_dict': dict25,
            'proj0': dict25['projx'][7],
            'x_axis0': dict25['x_axis'] * 1e-6,
            'n_offset': 0,
            'filename0': file25,
            'blmeas': blmeas25,
            'flipx': False,
        },
    }

    for main_label, p_dict in process_dict.items():
        #if main_label != 'Medium':
        #    continue

        projx0 = p_dict['proj0']
        x_axis0 = p_dict['x_axis0']
        if np.diff(x_axis0)[0] < 0:
            x_axis0 = x_axis0[::-1]
            invert_x0 = True

        all_mean = []
        for proj in projx0:
            screen = get_screen_from_proj(proj, x_axis0, invert_x0)
            xx, yy = screen._xx, screen._yy
            gf = gaussfit.GaussFit(xx, yy)
            all_mean.append(gf.mean)

        mean0 = np.mean(all_mean)

        timestamp0 = misc.get_timestamp(os.path.basename(p_dict['filename0']))
        tracker0 = tracking.Tracker(
            archiver_dir + 'archiver_api_data/2020-10-03.h5', timestamp0,
            struct_lengths, n_particles, n_emittances, screen_bins,
            screen_cutoff, smoothen, profile_cutoff, len_profile)

        bp_test = tracking.get_gaussian_profile(40e-15, tt_halfrange,
                                                len_profile, charge,
                                                tracker0.energy_eV)
        screen_sim = tracker0.matrix_forward(bp_test, [10e-3, 10e-3],
                                             [0, 0])['screen']
        all_emittances = []
        for proj in projx0:
            screen_meas = get_screen_from_proj(proj, x_axis0, invert_x0)
            emittance_fit = misc.fit_nat_beamsize(screen_meas, screen_sim,
                                                  n_emittances[0])
            all_emittances.append(emittance_fit)

        new_emittance = np.mean(all_emittances)
        print(main_label, 'Emittance [nm]', new_emittance * 1e9)
        n_emittances[0] = new_emittance

        dict_ = p_dict['main_dict']
        file_ = p_dict['filename']
        x_axis = dict_['x_axis'] * 1e-6
        y_axis = dict_['y_axis'] * 1e-6
        n_offset = p_dict['n_offset']

        if np.diff(x_axis)[0] < 0:
            x_axis = x_axis[::-1]
            invert_x = True
        else:
            invert_x = False

        if np.diff(y_axis)[0] < 0:
            y_axis = y_axis[::-1]
            invert_y = True
        else:
            invert_y = False

        timestamp = misc.get_timestamp(os.path.basename(file_))
        tracker = tracking.Tracker(
            archiver_dir + 'archiver_api_data/2020-10-03.h5', timestamp,
            struct_lengths, n_particles, n_emittances, screen_bins,
            screen_cutoff, smoothen, profile_cutoff, len_profile)

        blmeas = p_dict['blmeas']
        flip_measured = p_dict['flipx']
        profile_meas = tracking.profile_from_blmeas(blmeas,
                                                    tt_halfrange,
                                                    charge,
                                                    tracker.energy_eV,
                                                    subtract_min=True)
        profile_meas.reshape(len_profile)
        profile_meas2 = tracking.profile_from_blmeas(blmeas,
                                                     tt_halfrange,
                                                     charge,
                                                     tracker.energy_eV,
                                                     subtract_min=True,
                                                     zero_crossing=2)
        profile_meas2.reshape(len_profile)
        if flip_measured:
            profile_meas.flipx()
        else:
            profile_meas2.flipx()

        profile_meas.cutoff(1e-2)
        profile_meas2.cutoff(1e-2)

        beam_offsets = [0., -(dict_['value'] * 1e-3 - mean_struct2)]
        distance_um = (gaps[n_streaker] / 2. - beam_offsets[n_streaker]) * 1e6
        if n_offset is not None:
            distance_um = distance_um[n_offset]
            beam_offsets = [beam_offsets[0], beam_offsets[1][n_offset]]

        tdc_screen1 = tracker.matrix_forward(profile_meas, gaps,
                                             beam_offsets)['screen']
        tdc_screen2 = tracker.matrix_forward(profile_meas, gaps,
                                             beam_offsets)['screen']

        plt.figure(fig_paper.number)
        sp_profile_comp = subplot(sp_ctr_paper,
                                  title=main_label,
                                  xlabel='t [fs]',
                                  ylabel='Intensity (arb. units)')
        sp_ctr_paper += 1
        profile_meas.plot_standard(sp_profile_comp,
                                   norm=True,
                                   color='black',
                                   label='TDC',
                                   center='Right')

        ny, nx = 2, 4
        subplot = ms.subplot_factory(ny, nx)
        sp_ctr = np.inf

        all_profiles, all_screens = [], []

        if n_offset is None:
            projections = dict_['projx']
        else:
            projections = dict_['projx'][n_offset]

        for n_image in range(len(projections)):
            screen = get_screen_from_proj(projections[n_image], x_axis,
                                          invert_x)
            screen.crop()
            screen._xx = screen._xx - mean0

            gauss_dict = tracker.find_best_gauss(
                sig_t_range,
                tt_halfrange,
                screen,
                gaps,
                beam_offsets,
                n_streaker,
                charge,
                self_consistent=self_consistent)
            best_screen = gauss_dict['reconstructed_screen']
            best_screen.cutoff(1e-3)
            best_screen.crop()
            best_profile = gauss_dict['reconstructed_profile']
            if n_image == 0:
                screen00 = screen
                bp00 = best_profile
                best_screen00 = best_screen
            best_gauss = gauss_dict['best_gauss']

            if sp_ctr > (ny * nx):
                ms.figure('All reconstructions Distance %i %s' %
                          (distance_um, main_label))
                sp_ctr = 1

            if n_image % 2 == 0:
                sp_profile = subplot(sp_ctr, title='Reconstructions')
                sp_ctr += 1
                sp_screen = subplot(sp_ctr, title='Screens')
                sp_ctr += 1
                profile_meas.plot_standard(sp_profile,
                                           color='black',
                                           label='Measured',
                                           norm=True,
                                           center='Right')
                tdc_screen1.plot_standard(sp_screen, color='black')

            color = screen.plot_standard(sp_screen,
                                         label=n_image)[0].get_color()
            best_screen.plot_standard(sp_screen, color=color, ls='--')
            best_profile.plot_standard(sp_profile,
                                       label=n_image,
                                       norm=True,
                                       center='Right')
            sp_profile.legend()
            sp_screen.legend()

            all_profiles.append(best_profile)

        # Averaging the reconstructed profiles
        all_profiles_time, all_profiles_current = [], []
        for profile in all_profiles:
            profile.shift('Right')
            #all_profiles_time.append(profile.time - profile.time[np.argmax(profile.current)])
            all_profiles_time.append(profile.time)
        new_time = np.linspace(min(x.min() for x in all_profiles_time),
                               max(x.max() for x in all_profiles_time),
                               len_profile)
        for tt, profile in zip(all_profiles_time, all_profiles):
            new_current = np.interp(new_time,
                                    tt,
                                    profile.current,
                                    left=0,
                                    right=0)
            new_current *= charge / new_current.sum()
            all_profiles_current.append(new_current)
        all_profiles_current = np.array(all_profiles_current)
        mean_profile = np.mean(all_profiles_current, axis=0)
        std_profile = np.std(all_profiles_current, axis=0)
        average_profile = tracking.BeamProfile(new_time, mean_profile,
                                               tracker.energy_eV, charge)
        average_profile.plot_standard(sp_profile_comp,
                                      label='Reconstructed',
                                      norm=True,
                                      center='Right')

        ms.figure('Test averaging %s' % main_label)
        sp = plt.subplot(1, 1, 1)
        for yy in all_profiles_current:
            sp.plot(new_time, yy / np.trapz(yy, new_time), lw=0.5)

        to_plot = [
            ('Average', new_time, mean_profile, 'black', 3),
            ('+1 STD', new_time, mean_profile + std_profile, 'black', 1),
            ('-1 STD', new_time, mean_profile - std_profile, 'black', 1),
        ]

        integral = np.trapz(mean_profile, new_time)
        for pm, ctr, color in [(profile_meas, 1, 'red'),
                               (profile_meas2, 2, 'green')]:
            #factor = integral/np.trapz(pm.current, pm.time)
            #t_meas = pm.time-pm.time[np.argmax(pm.current)]
            i_meas = np.interp(new_time, pm.time, pm.current)
            bp = tracking.BeamProfile(new_time,
                                      i_meas,
                                      energy_eV=tracker.energy_eV,
                                      charge=charge)
            bp.shift('Right')

            to_plot.append(('TDC %i' % ctr, bp.time, bp.current, color, 3))

        for label, tt, profile, color, lw in to_plot:
            gf = gaussfit.GaussFit(tt, profile)
            width_fs = gf.sigma * 1e15
            if label is None:
                label = ''
            label = (label + ' %i fs' % width_fs).strip()
            factor = np.trapz(profile, tt)
            sp.plot(tt, profile / factor, color=color, lw=lw, label=label)

        sp.legend(title='Gaussian fit $\sigma$')

    plt.show()
screen._yy -= screen._yy.min()
screen.reshape(1e3)
screen.cutoff(0.05)
screen.remove0()
screen.reshape(1e3)

sp_proj = subplot(sp_ctr, title='Screen', xlabel='Position [mm]', ylabel='Intensity (arb. units)')
sp_ctr += 1

screen.plot_standard(sp_proj, label='Streaking')
screen0.plot_standard(sp_proj, label='No streaking')

tracker = tracking.Tracker(archiver_dir + 'archiver_api_data/2020-10-03.h5', timestamp, struct_lengths, n_particles, n_emittances, screen_bins, screen_cutoff, smoothen, profile_cutoff, len_profile)
r12 = tracker.calcR12()[1]

bp_gauss = tracking.get_gaussian_profile(30e-15, 200e-15, 1e3, charge, tracker.energy_eV)
offset_arr = dict_['value']*1e-3 - mean_struct2

wf = bp_gauss.calc_wake(gaps[1], offset_arr[n_offset], struct_lengths[1])

dipole_wake = wf['dipole']['wake_potential']
dipole_t = wf['input']['charge_xx']/c

sp_wf = subplot(sp_ctr, title='Wakefield', xlabel='Time [fs]', ylabel='Wake [V/m]')
sp_ctr += 1

sp_wf.plot(dipole_t, dipole_wake)

sp_deltax = subplot(sp_ctr, title='Wake effect', xlabel='Time [fs]', ylabel='$\Delta$ x')
sp_ctr += 1
Пример #5
0
def opt_func(sig_t_fs, count_nfev, profile_cutoff, screen_cutoff, smoothen):
    a = np.array(opt_func_values)
    if len(a) > 0 and np.any(a[:, 0] == sig_t_fs):
        index = np.argwhere(sig_t_fs == a[:, 0])[0]
        return a[index, 1]

    global opt_ctr, sp_ctr, plot_ctr, sp, nfev_ctr, sp2

    sig_t = sig_t_fs / 1e15

    bp_wake = tracking.get_gaussian_profile(sig_t, tt_halfrange, len_profile,
                                            charge, tracker.energy_eV)
    baf = tracker.back_and_forward(meas_screen, bp_wake, gaps, beam_offsets,
                                   n_streaker)

    if self_consistent:

        baf_self = tracker.back_and_forward(meas_screen, baf['beam_profile'],
                                            gaps, beam_offsets, n_streaker)
        screen_self = baf_self['screen']

    else:
        screen_self = baf['screen']
    profile = baf['beam_profile']

    diff = screen_self.compare(meas_screen)

    print(opt_ctr, '%f fs' % sig_t_fs, '%.1e' % diff)
    opt_ctr += 1

    if opt_plot:
        if plot_ctr == 5:
            plot_ctr = 0
            if sp_ctr == ny * nx + 1:
                ms.figure('Optimization %s' % label)
                sp_ctr = 1
            sp = subplot(sp_ctr, title='Screen')
            sp_ctr += 1
            sp.plot(meas_screen_shift.x * 1e3,
                    meas_screen_shift.intensity / meas_screen_shift.integral,
                    label='Original')
            sp2 = subplot(sp_ctr, title='Profile')
            sp_ctr += 1
            sp2.plot(profile_meas.time * 1e15,
                     profile_meas.current / profile_meas.integral,
                     label='Original')

        plot_ctr += 1
        sp.plot(screen_self.x * 1e3,
                screen_self.intensity / screen_self.integral,
                label='%i: %.1f fs %.3e' % (opt_ctr, sig_t_fs, diff))
        sp2.plot(profile.time * 1e15,
                 profile.current / profile.integral,
                 label='%i: %.1f fs %.3e' % (opt_ctr, sig_t_fs, diff))
        sp.legend()
        sp2.legend()
        plt.show()
        plt.pause(0.01)

    if count_nfev:
        nfev_ctr += 1
        if nfev_ctr > max_nfev:
            raise StopIteration(sig_t_fs)

    opt_func_values.append((float(sig_t_fs), diff))
    opt_func_screens.append(screen_self)
    opt_func_profiles.append(baf['beam_profile'])

    return diff
Пример #6
0
else:
    magnet_file = '/afs/psi.ch/intranet/SF/Beamdynamics/Philipp/data/archiver_api_data/2020-07-26.h5'
    bl_meas_file = '/sf/data/measurements/2020/02/03/Bunch_length_meas_2020-02-03_15-59-13.h5'

tracker = tracking.Tracker(magnet_file,
                           timestamp,
                           struct_lengths,
                           energy_eV='file')
energy_eV = tracker.energy_eV

profile_meas = tracking.profile_from_blmeas(bl_meas_file,
                                            tt_halfrange,
                                            charge,
                                            energy_eV,
                                            subtract_min=False)
profile_gauss = tracking.get_gaussian_profile(sig_t, tt_halfrange, len_profile,
                                              charge, energy_eV)

meas_screen_dict = {}
for beam_offset0 in beam_offsets_s0_real:
    beam_offsets = [beam_offset0, 0.]
    meas_screen = tracker.elegant_forward(profile_meas, gaps, beam_offsets,
                                          n_bins)['screen']
    meas_screen.smoothen(smoothen)
    meas_screen.cut(backtrack_cutoff)

for beam_offset0 in beam_offsets_s0:
    beam_offsets = [beam_offset0, 0.]
    fab_dict_real = tracker.forward_and_back(profile_meas,
                                             profile_meas,
                                             gaps,
                                             beam_offsets,
Пример #7
0
hostname = gethostname()
if hostname == 'desktop':
    dirname1 = '/storage/data_2020-10-03/'
    dirname2 = '/storage/data_2020-10-04/'
    archiver_dir = '/storage/Philipp_data_folder/'
elif hostname == 'pc11292.psi.ch':
    dirname1 = '/sf/data/measurements/2020/10/03/'
    dirname2 = '/sf/data/measurements/2020/10/04/'
elif hostname == 'pubuntu':
    dirname1 = '/home/work/data_2020-10-03/'
    dirname2 = '/home/work/data_2020-10-04/'
    archiver_dir = '/home/work/'



bp_gauss = tracking.get_gaussian_profile(40e-15, 200e-15, len_profile, charge, energy_eV)

flat_current = np.zeros_like(bp_gauss.current)
flat_time = bp_gauss.time
flat_current[np.logical_and(flat_time > -40e-15, flat_time < 40e-15)] = 1

bp_flat = tracking.BeamProfile(flat_time, flat_current, energy_eV, charge)

sig = 5e-15
dhf_current = doublehornfit.DoublehornFit.fit_func(flat_time, -20e-15, 20e-15, sig, sig, sig, sig, 0.5, 1, 1)
dhf_current *= charge / dhf_current.sum()

bp_dhf = tracking.BeamProfile(flat_time, dhf_current, energy_eV, charge)
bp_dhf.cutoff(1e-3)

Пример #8
0
                           screen_bins=screen_bins,
                           smoothen=smoothen,
                           profile_cutoff=profile_cutoff,
                           len_screen=len_profile)
energy_eV = tracker.energy_eV

profile_meas = tracking.profile_from_blmeas(bl_meas_file,
                                            tt_halfrange,
                                            charge,
                                            energy_eV,
                                            subtract_min=False)
profile_meas.center()

profile_gauss = tracking.get_gaussian_profile(sig_t,
                                              tt_halfrange,
                                              len_profile,
                                              charge,
                                              tracker.energy_eV,
                                              cutoff=profile_cutoff)

screen0 = tracker.matrix_forward(profile_meas, gaps, [0, 0])['screen']
meas_screen = tracker.matrix_forward(profile_meas, gaps,
                                     beam_offsets)['screen']

ms.figure('')
subplot = ms.subplot_factory(2, 2)
sp_ctr = 1

sp_profile0 = subplot(sp_ctr,
                      title='Beam profiles',
                      xlabel='t [fs]',
                      ylabel='Current (arb. units)')