Пример #1
0
    def openFile(self, *args, **kwargs) -> None:
        options = {
            "caption":
            "Open file",
            "filter": ("Pandas DataFrame (*.pkl);;"
                       "CSV files (*.csv);;"
                       "Sqlite3 files (*.db)"),
            #             "filter": "Data files (*.csv *.pkl)",
            "directory":
            os.path.expanduser("~"),
        }

        self.filename = QFileDialog.getOpenFileName(self, **options)[0]
        if self.filename == "":
            return
        self.filename = Path(self.filename)
        self._traffic = Traffic.from_file(self.filename)

        assert self._traffic is not None
        self._tview = self._traffic.sort_values("timestamp")
        assert self._tview is not None
        self.open_dropdown.setItemText(0, self.filename.name)
        self.map_plot.default_plot(self._tview)

        self.identifier_select.clear()
        for callsign in sorted(cast(Set[str], self._tview.callsigns)):
            self.identifier_select.addItem(callsign)

        self.set_time_range()
        self.set_float_columns()
Пример #2
0
def get_flight(inf, calls=['*'], landing=False, takeoff=False):
    flist = []
    try:
        fdata = Traffic.from_file(inf).clean_invalid()
        fdata = fdata.filter().eval()
    except:
        return flist
    for flight in fdata:
        if (flight.callsign[0:7] == 'WILDLIF'):
            continue
        if (flight.callsign[0:7] == 'FOLOWME'):
            continue
        if (flight.callsign[0:5] == 'RADAR'):
            continue
        if (flight.callsign[0:7] == 'FIRETEN'):
            continue
        if (flight.callsign[0:8] == 'DUTYOFIR'):
            continue
        if (np.nanmax(flight.data['altitude'].values) < 300):
            continue
        if (flight.callsign[0:3] not in calls):
            continue
        if (landing):
            if (np.nanmean(flight.data['vertical_rate'].values) > 200):
                continue
        if (takeoff):
            if (np.nanmean(flight.data['vertical_rate'].values) < -200):
                continue
        if (flight.typecode is None):
            flist.append(flight)
    return flist
Пример #3
0
    def on_filter(self, max_alt: int, max_time: datetime) -> None:

        assert self._traffic is not None

        west, east, south, north = self.map_plot.ax.get_extent(
            crs=PlateCarree())

        self._tview = self._traffic.before(max_time).sort_values("timestamp")

        if self._tview is None:
            return

        filtered = Traffic.from_flights(
            Flight(f.data.ffill().bfill()) for f in self._tview)
        if "altitude" in filtered.data.columns:
            filtered = filtered.query(
                f"altitude != altitude or altitude <= {max_alt}")
        if "latitude" in self._tview.data.columns:
            filtered = filtered.query("latitude != latitude or "
                                      f"({west} <= longitude <= {east} and "
                                      f"{south} <= latitude <= {north})")

        self.identifier_select.clear()
        text = self.identifier_input.text()
        # cast is necessary because of the @lru_cache on callsigns which hides
        # the type annotation
        for callsign in sorted(cast(Set[str], filtered.callsigns)):
            if re.match(text, callsign, flags=re.IGNORECASE):
                self.identifier_select.addItem(callsign)

        callsigns = cast(Set[str], filtered.callsigns)
        self.map_plot.default_plot(self._tview[callsigns])
        self.set_float_columns()
Пример #4
0
def main(args):
    if not os.path.exists(args.savepath):
        os.makedirs(args.savepath)

    traffic = Traffic.from_file(args.data)
    list_features = ["track_unwrapped", "longitude", "latitude", "altitude"]

    nb_samples = len(traffic[0])
    nb_features = len(list_features)

    algo_clustering = AutoencoderTSNE(
        gpu=args.gpu,
        model=Autoencoder((nb_samples * nb_features, 32, 8, 2)),
        learning_rate=args.learning_rate,
        weight_decay=args.learning_rate,
        lambda_kl=args.lambda_kl,
        nb_iterations=args.nb_iterations,
        batch_size=args.batch_size,
        algo_clustering=DBSCAN(eps=0.06, min_samples=20),
        distance_trajectory="euclidean",  # delta_max
        savepath=f"{args.savepath}/model.pth",
    )

    t_tsne = traffic.clustering(
        nb_samples=None,  # nb_samples,
        features=list_features,
        clustering=algo_clustering,
        transform=MinMaxScaler(feature_range=(-1, 1)),
    ).fit_predict()

    t_tsne.to_parquet(f"{args.savepath}/t_tsne.parquet")
Пример #5
0
def get_flight(inf):
    """Load a series of flights from a file using Xavier's 'traffic' library.

    Input:
        -   inf, the input filename
    Returns:
        -   a list of flights
    """
    flist = []
    #    try:
    fdata = Traffic.from_file(inf).query("latitude == latitude")
    fdata = fdata.clean_invalid().filter().eval()
    #    except:
    #        return flist
    for flight in fdata:
        pos = flight.callsign.find(CNS.search_call)
        if (pos < 0):
            continue
        f_data = flight.data
        f_data = f_data.drop_duplicates('timestamp')
        f_data = f_data.drop_duplicates('longitude')
        f_data = f_data.drop_duplicates('latitude')
        f_data = f_data.query('altitude<10000')
        f_data = f_data.dropna()
        flight.data = f_data
        flist.append(flight)
    return flist
Пример #6
0
def loadFlights(start_day, end_day):
    filename = getFlightsFilename(start_day, end_day)
    flights = Traffic.from_file(filename)

    if logLvl >= 1:
        print("Loaded " + str(len(flights)) + " flights")

    return flights
Пример #7
0
def loadFlights(start_day, end_day, callsign):
    filename = recordings_folder + getFlightsFilename(start_day, end_day,
                                                      callsign)
    flights = Traffic.from_file(filename)

    print("Loaded " + str(len(flights)) + " flights")

    return flights
def main():
    indir = '/gf2/eodg/SRP001_PROUD_TURBREP/GO_AROUNDS/DULLES_GOAROUND/IN_LRG/'
    outdir_kml = '/gf2/eodg/SRP001_PROUD_TURBREP/GO_AROUNDS/DULLES_GOAROUND/OUT_KML/'

    main_types = OSFD.make_typlist_all()
    types_list = main_types[0][1]

    files = glob.glob(indir + '*2018*.pkl')
    files.sort()

    fli_len = len(files)

    # Number of files to open in one go
    n_files_proc = 24
    pool_proc = 50

    f_data = []
    pool = mp.Pool(processes=pool_proc)
    for i in range(0, fli_len, n_files_proc):
        print("Processing batch starting with " + str(i + 1).zfill(5) +
              " of " + str(fli_len).zfill(5))

        p_list = []
        # First we load several files at once
        for j in range(0, n_files_proc):
            if (i + j < fli_len):
                p_list.append(
                    pool.apply_async(OSFD.get_flight, args=(files[i + j], )))

        for p in p_list:
            t_res = p.get()
            for fli in t_res:
                f_data.append(fli)
        traf_arr = Traffic.from_flights(f_data)

        p_list = []
        results = []
        f_data = []

        end_time = traf_arr.end_time

        # Now we process the results
        for flight in traf_arr:
            if (flight.stop + timedelta(minutes=5) < end_time):
                p_list.append(
                    pool.apply_async(p_f,
                                     args=(
                                         flight,
                                         runway_list,
                                         outdir_kml,
                                         types_list,
                                     )))
            else:
                f_data.append(flight)

        for p in p_list:
            t_res = p.get()
            results.append(t_res)
Пример #9
0
def load_flights():
    flights=list()
    for file in files:
        flights.extend(Traffic.from_file(file))

    callsigns=dict()
    for flight in flights:
        if flight.callsign not in callsigns:
            callsigns[flight.callsign]=0
        callsigns[flight.callsign]+=1
    print(callsigns)

    filtered=set()
    for c in callsigns:
        if callsigns[c]>monthly_flights:
            filtered.add(c)
    print(filtered)
Пример #10
0
    def __call__(
        self,
        fun: Callable[..., "LazyTraffic"],
        *args,
        **kwargs,
    ) -> Optional["Flight"]:
        from traffic.core import Flight, Traffic  # noqa: F811

        in_ = Traffic.from_flights(
            segment.assign(index_=i) for i, segment in enumerate(self))
        if in_ is None:
            return None
        out_ = fun(in_, *args, **kwargs).eval()
        if out_ is None:
            return None

        return Flight(out_.data)
Пример #11
0
def pretrained_clust(
    traffic_file,
    list_features,
    algo_clustering,
    model,
    pretrained_path,
    to_pickle,
    gpu=0,
):
    t = Traffic.from_file(traffic_file)

    ae_tsne = AutoencoderTSNE(
        gpu=gpu,
        model=model,
        pretrained_path=pretrained_path,
        algo_clustering=algo_clustering,
    )

    t_c = t.clustering(
        nb_samples=None,
        features=list_features,
        clustering=ae_tsne,
        transform=MinMaxScaler(feature_range=(-1, 1)),
    ).fit_predict()

    re, scores = ae_tsne.score_samples()
    t_c_re = pd.DataFrame.from_records(
        [dict(flight_id=f.flight_id, re=re) for f, re in zip(t_c, re)])
    t_c = t_c.merge(t_c_re, on="flight_id")
    d = {"flight_id": "nunique", "re": ["mean", "min", "max"]}

    if scores is not None:
        t_c_scores = pd.DataFrame.from_records([
            dict(flight_id=f.flight_id, score=score)
            for f, score in zip(t_c, scores)
        ])
        t_c = t_c.merge(t_c_scores, on="flight_id")
        d["score"] = ["mean", "min", "max"]

    print(t_c.groupby(["cluster"]).agg(d))
    t_c.to_pickle(to_pickle)

    return ae_tsne, t_c
Пример #12
0
def callsign_monthly_frequency():
    all_callsigns=set()
    for file in files:
        flights=Traffic.from_file(file)
        callsigns=dict()
        for flight in flights:
            if flight.callsign not in callsigns:
                callsigns[flight.callsign]=0
            callsigns[flight.callsign]+=1
        #print(callsigns)

        filtered=set()
        for c in callsigns:
            if callsigns[c]>monthly_flights:
                filtered.add((c, callsigns[c]))
                all_callsigns.add(c)
        
        print(file[len(recording_folder)+5:len(recording_folder)+12], filtered)
    return all_callsigns
Пример #13
0
def icaos_monthly_frequency():
    all_icaos=set()
    for file in files:
        flights=Traffic.from_file(file)
        icaos=dict()
        for flight in flights:
            if flight.icao24 not in icaos:
                icaos[flight.icao24]=0
            icaos[flight.icao24]+=1
        #print(icaos)

        filtered=set()
        for c in icaos:
            if icaos[c]>monthly_flights:
                filtered.add((c, icaos[c]))
                all_icaos.add(c)
        
        print(file[len(recording_folder)+5:len(recording_folder)+12], filtered)
    return all_icaos
Пример #14
0
def get_flight_basic(inf):
    flist = []
    try:
        fdata = Traffic.from_file(inf)
    except:
        return flist
    for flight in fdata:
        if (flight.callsign[0:7] == 'WILDLIF'):
            continue
        if (flight.callsign[0:7] == 'FOLOWME'):
            continue
        if (flight.callsign[0:5] == 'RADAR'):
            continue
        if (flight.callsign[0:7] == 'FIRETEN'):
            continue
        if (flight.callsign[0:8] == 'DUTYOFIR'):
            continue
        if (flight.typecode is None):
            flist.append(flight)
    return flist
Пример #15
0
def plot_data(flights: Traffic, airport: Airport, output: Path,
              arrival: int=1):

    fig = plt.figure(figsize=(10, 10))
    ax = plt.axes(projection=UTM((airport.lon + 180) // 6,
                                 southern_hemisphere=(airport.lat > 0)))

    ax.add_feature(countries(scale='50m'))
    ax.add_feature(rivers(scale='50m'))
    ax.add_feature(lakes(scale='50m'))
    ax.gridlines()
    ax.set_extent(airport.extent)

    try:
        from cartotools.osm import request, tags
        request(f'{airport.icao} airport', **tags.airport).plot(ax)
    except Exception:
        pass

    fd = flights.data

    fd = fd[fd.longitude > airport.lon - 1]
    fd = fd[fd.longitude < airport.lon + 1]
    fd = fd[fd.latitude > airport.lat - 1]
    fd = fd[fd.latitude < airport.lat + 1]
    fd = fd.groupby('callsign').filter(
        lambda f: arrival * f.vertical_rate[:-100].mean() < -10)

    for flight in Traffic(fd):
        flight.plot(ax)

    fig.suptitle(f"{airport.name}")
    fig.set_tight_layout(True)

    logging.info(f"Image saved as {output}")
    fig.savefig(output.as_posix())
    for p in processes:
        p.join()

    # Move on to the next block of times
    start_dt = start_dt + timedelta(hours=nummer)

    # If we have reached the end of the block then exit
    if (start_dt >= end_dt):
        break

files = glob(odir + '*.pkl')
files.sort()
first = True
for inf in files:
    if first:
        fdata = Traffic.from_file(inf).query("latitude == latitude")
        fdata = fdata.clean_invalid().filter().eval()
        first = False
    else:
        tdata = Traffic.from_file(inf).query("latitude == latitude")
        tdata = tdata.clean_invalid().filter().eval()
        fdata = fdata + tdata
    print(len(fdata))

figsize = (20, 20)
projparm = ccrs.PlateCarree(central_longitude=(bounds[2] - bounds[0]) / 2)

alt_cut = 500

fig, ax = plt.subplots(1,
                       1,
Пример #17
0
def to_bluesky(
    traffic: Traffic,
    filename: Union[str, Path],
    minimum_time: Optional[timelike] = None,
) -> None:
    """Generates a Bluesky scenario file."""

    if minimum_time is not None:
        traffic = traffic.after(minimum_time)

    if isinstance(filename, str):
        filename = Path(filename)

    if not filename.parent.exists():
        filename.parent.mkdir(parents=True)

    altitude = ("baro_altitude"
                if "baro_altitude" in traffic.data.columns else "altitude")

    if "typecode" not in traffic.data.columns:
        traffic = Traffic(
            traffic.data.merge(
                aircraft.data[["icao24",
                               "typecode"]].drop_duplicates("icao24"),
                on="icao24",
                how="inner",
            ))

    if "cas" not in traffic.data.columns:
        traffic = Traffic(
            traffic.data.assign(cas=vtas2cas(traffic.data.ground_speed,
                                             traffic.data[altitude])))

    with filename.open("w") as fh:
        t_delta = traffic.data.timestamp - traffic.start_time
        data = (traffic.assign_id().data.groupby("flight_id").filter(
            lambda x: x.shape[0] > 3).assign(
                timedelta=t_delta.apply(fmt_timedelta)).sort_values(
                    by="timestamp"))

        for column in data.columns:
            data[column] = data[column].astype(str)

        is_created: List[str] = []
        is_deleted: List[str] = []

        start_time = cast(pd.Timestamp, traffic.start_time).time()
        fh.write(f"00:00:00> TIME {start_time}\n")

        # Add some bluesky command for the visualisation
        # fh.write("00:00:00>trail on\n")
        # fh.write("00:00:00>ssd conflicts\n")

        # We remove an object when it's its last data point
        buff = data.groupby("flight_id").timestamp.max()
        dd = pd.DataFrame(columns=["timestamp"],
                          data=buff.values,
                          index=buff.index.values)
        map_icao24_last_point = {}
        for i, v in dd.iterrows():
            map_icao24_last_point[i] = v[0]

        # Main loop to write lines in the scenario file
        for _, v in data.iterrows():
            if v.flight_id not in is_created:
                # If the object is not created then create it
                is_created.append(v.flight_id)
                fh.write(f"{v.timedelta}> CRE {v.callsign} {v.typecode} "
                         f"{v.latitude} {v.longitude} {v.track} "
                         f"{v[altitude]} {v.cas}\n")

            elif v.timestamp == map_icao24_last_point[v.flight_id]:
                # Remove an aircraft when no data are available
                if v.flight_id not in is_deleted:
                    is_deleted.append(v.flight_id)
                    fh.write(f"{v.timedelta}> DEL {v.callsign}\n")

            elif v.flight_id not in is_deleted:
                # Otherwise update the object position
                fh.write(f"{v.timedelta}> MOVE {v.callsign} "
                         f"{v.latitude} {v.longitude} {v[altitude]} "
                         f"{v.track} {v.cas} {v.vertical_rate}\n")

        logging.info(f"Scenario file {filename} written")
Пример #18
0
    print("Processing batch starting with " + str(i + 1).zfill(5) + " of " +
          str(fli_len).zfill(5))

    p_list = []
    # First we load several files at once
    for j in range(0, n_files_proc):
        if (i + j < fli_len):
            p_list.append(
                pool.apply_async(DF.get_flight_basic, args=(files[i + j], )))

    for p in p_list:
        t_res = p.get()
        for fli in t_res:
            f_data.append(fli)
    try:
        traf_arr = Traffic.from_flights(f_data)
    except:
        counter = counter + n_files_proc
        continue

    p_list = []
    results = []
    f_data = []

    end_time = traf_arr.end_time

    # Now we process the results
    for flight in traf_arr:
        p_list.append(pool.apply_async(DF.get_acft, args=(flight, )))

    for p in p_list:
Пример #19
0
def main():
    indir = '/gf2/eodg/SRP001_PROUD_TURBREP/DULLES_GOAROUND/IN/'
    outdir = '/gf2/eodg/SRP001_PROUD_TURBREP/DULLES_GOAROUND/OUT/'

    files = glob.glob(indir + '*201802*.pkl')
    files.sort()

    do_plots = False
    do_kml = False

    first = True

    counters = 0

    main_types = OSF.make_typlist()

    alt_hist_main = np.zeros((110, 540))
    gs_hist_main = np.zeros((110, 50))
    lalo_hist_main = np.zeros((220, 300))
    vsp_hist_main = np.zeros((110, 120))
    gal_hist_main = np.zeros((110, 500))
    hdg_hist_main = np.zeros((110, 80))

    fli_len = len(files)

    # Number of files to open in one go
    n_files_proc = 50

    plot_lim = 50

    f_data = []
    pool = mp.Pool(processes=55)

    for typr in main_types:

        kml = simplekml.Kml(open=1)
        alt_hist_main[:, :] = 0.
        gs_hist_main[:, :] = 0.
        lalo_hist_main[:, :] = 0.
        vsp_hist_main[:, :] = 0.
        gal_hist_main[:, :] = 0.
        hdg_hist_main[:, :] = 0.
        plt.clf()
        print("Now processing:", typr[0])
        types_list = typr[1]
        outf_format = typr[2]
        figs, nums = OSF.setup_figs()
        for i in range(0, fli_len, n_files_proc):
            print("Processing batch starting with " + str(i + 1).zfill(5) +
                  " of " + str(fli_len).zfill(5))

            p_list = []
            # First we load several files at once
            for j in range(0, n_files_proc):
                if (i + j < fli_len):
                    p_list.append(
                        pool.apply_async(OSF.get_flight,
                                         args=(files[i + j], )))

            for p in p_list:
                t_res = p.get()
                for fli in t_res:
                    f_data.append(fli)
            traf_arr = Traffic.from_flights(f_data)

            p_list = []
            results = []
            f_data = []

            end_time = traf_arr.end_time

            # Now we process the results
            for flight in traf_arr:
                if (flight.stop + timedelta(minutes=5) < end_time):
                    p_list.append(
                        pool.apply_async(proc_flight,
                                         args=(
                                             flight,
                                             rwy,
                                             gate,
                                             types_list,
                                             do_plots,
                                             do_kml,
                                         )))
                else:
                    f_data.append(flight)

            for p in p_list:
                t_res = p.get()
                results.append(t_res)

            # Below is for either processing method
            for ddi in results:
                if (ddi == None):
                    continue
                if (do_plots):
                    OSF.add_data_to_fig(ddi, nums)

                alt_hist_main = alt_hist_main + ddi['alt_hi']
                gs_hist_main = gs_hist_main + ddi['gspd_hi']
                lalo_hist_main = lalo_hist_main + ddi['pos_hi']
                vsp_hist_main = vsp_hist_main + ddi['vspd_hi']
                gal_hist_main = gal_hist_main + ddi['galt_hi']
                hdg_hist_main = hdg_hist_main + ddi['hdgs_hi']

                if (do_kml):
                    ls = kml.newlinestring(name=ddi['callsign'])
                    ls.altitudemode = simplekml.AltitudeMode.relativetoground
                    ls.extrude = 0
                    for irng in range(0, len(ddi['lats'])):
                        ls.coords.addcoordinates([
                            (ddi['lons'][irng], ddi['lats'][irng],
                             ddi['galt'][irng] / 3.28084)
                        ])

            counters = counters + n_files_proc
            if (counters > plot_lim):
                if (do_plots):
                    OSF.plot_figs(nums, outdir, outf_format)
                try:
                    outi = {}
                    outi['alt_hist'] = alt_hist_main
                    outi['gs_hist'] = gs_hist_main
                    outi['lalo_hist'] = lalo_hist_main
                    outi['vsp_hist'] = vsp_hist_main
                    outi['gal_hist'] = gal_hist_main
                    outi['hdg_hist'] = hdg_hist_main
                    np.save(outdir + outf_format + 'AC_Data.npy', outi)
                    if (do_kml):
                        kml.save(outdir + outf_format + 'TRAJ.kml')
                except:
                    print("ERROR")
                counters = 0

        outi = {}
        outi['alt_hist'] = alt_hist_main
        outi['gs_hist'] = gs_hist_main
        outi['lalo_hist'] = lalo_hist_main
        outi['vsp_hist'] = vsp_hist_main
        outi['gal_hist'] = gal_hist_main
        outi['hdg_hist'] = hdg_hist_main

        if (do_plots):
            OSF.plot_figs(nums, outdir, outf_format)
        np.save(outdir + outf_format + 'AC_Data.npy', outi)
        if (do_kml):
            kml.save(outdir + outf_format + 'TRAJ.kml')
Пример #20
0
def main():
    figs, nums = OSP.setup_figs_rwy_vabb()

    indir = '/gf2/eodg/SRP001_PROUD_TURBREP/GO_AROUNDS/VABB/INDATA/'
    outdir_pl = '/gf2/eodg/SRP001_PROUD_TURBREP/GO_AROUNDS/VABB/PLOT/'
    outdir_kml = '/gf2/eodg/SRP001_PROUD_TURBREP/GO_AROUNDS/VABB/KML/'
    outdir_np = '/gf2/eodg/SRP001_PROUD_TURBREP/GO_AROUNDS/VABB/ODATA/'

    files = glob.glob(indir + '*.pkl')
    files.sort()

    counters = 0

    good_calls = DD.good_calls_vabb()

    fli_len = len(files)

    # Number of files to open in one go
    n_files_proc = 24

    plot_lim = 200

    pool_proc = 100

    f_data = []
    pool = mp.Pool(processes=pool_proc)

    for main_count in range(0, fli_len, n_files_proc):
        print("Processing batch starting with " +
              str(main_count + 1).zfill(5) + " of " + str(fli_len).zfill(5))

        p_list = []
        # First we load several files at once
        for j in range(0, n_files_proc):
            if (main_count + j < fli_len):
                p_list.append(
                    pool.apply_async(DF.get_flight,
                                     args=(files[main_count + j], good_calls,
                                           True, False)))

        for p in p_list:
            t_res = p.get()
            for fli in t_res:
                f_data.append(fli)
        traf_arr = Traffic.from_flights(f_data)

        p_list = []
        results = []
        f_data = []

        end_time = traf_arr.end_time

        # Now we process the results
        for flight in traf_arr:
            if (flight.stop + timedelta(minutes=5) < end_time):
                p_list.append(
                    pool.apply_async(p_f_appr,
                                     args=(
                                         flight,
                                         VABB.rwy_list,
                                         outdir_np,
                                         outdir_kml,
                                     )))
            else:
                f_data.append(flight)

        for p in p_list:
            t_res = p.get()
            results.append(t_res)

        # Below is for either processing method
        for ddi in results:
            if (ddi is None):
                continue
            rwy = ddi['rwy']
            for i in range(0, len(nums)):
                if (rwy == VABB.rwy_list[i].name):
                    OSP.add_data_single_rwy(nums[i], ddi)

        counters = counters + n_files_proc
        if (counters > plot_lim):
            for i in range(0, len(nums)):
                OSP.save_plot_single_rwy(nums[i], VABB.rwy_list[i], main_count,
                                         outdir_pl)
            figs, nums = OSP.setup_figs_rwy_vabb()
            counters = 0
    for i in range(0, len(nums)):
        OSP.save_plot_single_rwy(nums[i], VABB.rwy_list[i], main_count,
                                 outdir_pl)
Пример #21
0
from traffic.data import opensky
from traffic.core import Traffic
import pandas as pd
"""
t_dcm = opensky.history(
    "2020-02-26 00:00",
    "2020-02-26 23:59",
    callsign="DCM%",
)
"""
t_dcm = Traffic.from_file("test.parquet")

#t_dcm = pd.read_parquet("test.parquet")

print(len(t_dcm))

unique_callsigns = set()
for f in t_dcm:
    unique_callsigns.add(f.callsign)

print(len(unique_callsigns))

by_callsign = {}
for c in t_dcm:
    if c.callsign in by_callsign:
        by_callsign[c.callsign].append(c)
    else:
        by_callsign[c.callsign] = [c]

for c in by_callsign:
    if len(by_callsign[c]) == 1:
Пример #22
0
def main(start_n, fidder, do_write):
    """The main code for detecting go-arounds.

    Arguments:
    start_n -- The index of the first file to read
    fidder -- the id of an open file to write log information into
    do_write -- boolean flag specifying whether to output data to textfile

    """
    # Total number of aircraft seen
    tot_n_ac = 0

    # Of which go-arounds
    tot_n_ga = 0

    top_dir = '/gf2/eodg/SRP002_PROUD_ADSBREP/GO_AROUNDS/VABB/'
    # indir stores the opensky data
    indir = top_dir + 'INDATA/'

    # odir_nm stores plots for normal landings
    odir_pl_nm = top_dir + 'OUT_PLOT/NORM/'

    # odir_ga stores plots for detected go-arounds
    odir_pl_ga = top_dir + 'OUT_PLOT/PSGA/'

    # odir_nm stores plots for normal landings
    odir_da_nm = top_dir + 'OUT_DATA/NORM/'

    # odir_ga stores plots for detected go-arounds
    odir_da_ga = top_dir + 'OUT_DATA/PSGA/'

    odirs = [odir_pl_nm, odir_pl_ga, odir_da_nm, odir_da_ga]

    # Output filenames for saving data about go-arounds
    out_file_ga = 'GA_MET_NEW.csv'
    # Output filenames for saving data about non-go-arounds
    out_file_noga = 'GA_NOGA_NEW.csv'

    t_frmt = "%Y/%m/%d %H:%M:%S"

    # File to save met info for g/a flights
    if (do_write):
        metfid = open(out_file_ga, 'w')
        nogfid = open(out_file_noga, 'w')
        metfid.write('ICAO24, Callsign, GA_Time, L_Time, Runway, Heading, Alt, Lat, \
                      Lon, gapt, rocvar, hdgvar, latvar, lonvar, gspvar, \
                      Temp, Dewp, Wind_Spd, Wind_Gust, Wind_Dir,Cld_Base,\
                      CB, Vis, Pressure\n')
        nogfid.write('ICAO24, Callsign, GA_Time, L_Time, Runway, gapt, rocvar, \
                      hdgvar, latvar, lonvar, gspvar, \
                      Temp, Dewp, Wind_Spd, Wind_Gust, Wind_Dir,Cld_Base,\
                      CB, Vis, Pressure\n')
    files = []
    files = glob.glob(indir+'**.pkl')
    files.sort()

    fli_len = len(files)

    colormap = {'GND': 'black', 'CL': 'green', 'CR': 'blue',
                'DE': 'orange', 'LVL': 'purple', 'NA': 'red'}

    # Number of files to open in one go
    n_files_proc = 55

    pool_proc = 100

    f_data = []
    pool = mp.Pool(processes=pool_proc)

    for main_count in range(start_n, fli_len, n_files_proc):
        print("Processing batch starting with "
              + str(main_count + 1).zfill(5) + " of "
              + str(fli_len).zfill(5))
        fidder.write("Processing batch starting with "
                     + str(main_count + 1).zfill(5) + " of "
                     + str(fli_len).zfill(5) + '\n')

        p_list = []
        # First we load several files at once
        for j in range(0, n_files_proc):
            if (main_count+j < fli_len):
                p_list.append(pool.apply_async(OSF.get_flight,
                                               args=(files[main_count+j],)))

        for p in p_list:
            t_res = p.get()
            for fli in t_res:
                f_data.append(fli)
        if(len(f_data) < 1):
            continue
        traf_arr = Traffic.from_flights(f_data)
        p_list = []
        f_data = []
        # Extend array end time if there's only one flight, else processing
        # will fail as we check to ensure latest flight is > 5 mins from end
        if (len(traf_arr) == 1):
            end_time = traf_arr.end_time + timedelta(minutes=10)
            print("Extending timespan due to single aircraft")
        else:
            end_time = traf_arr.end_time

        # Now we process the results
        for flight in traf_arr:
            if (flight.stop + timedelta(minutes=5) < end_time):
                p_list.append(pool.apply_async(OSF.proc_fl,
                                               args=(flight,
                                                     VABB.rwy_list,
                                                     odirs,
                                                     colormap,
                                                     True,
                                                     False,)))
            else:
                f_data.append(flight)

        for p in p_list:
            t_res = p.get()
            if (t_res != -1):
                tot_n_ac += 1
                # If there's a go-around, this will be True
                if (t_res[0]):
                    if (do_write):
                        metfid.write(t_res[1] + ',' + t_res[2] + ',')
                        metfid.write(t_res[3].strftime(t_frmt) + ',')
                        metfid.write(t_res[4].strftime(t_frmt) + ',')
                        metfid.write(t_res[5] + ',')
                        if (t_res[6] < 0):
                            t_res[6] = 360 + t_res[6]
                        metfid.write(str(t_res[6]) + ',')
                        metfid.write(str(t_res[7]) + ',')
                        metfid.write(str(t_res[8]) + ',')
                        metfid.write(str(t_res[9]) + ',')
                        metfid.write(str(t_res[10]) + ',')
                        metfid.write(str(t_res[11]) + ',')
                        metfid.write(str(t_res[12]) + ',')
                        metfid.write(str(t_res[13]) + ',')
                        metfid.write(str(t_res[14]) + ',')
                        metfid.write(str(t_res[15]) + ',')
                        metfid.write(str(t_res[16].temp) + ',')
                        metfid.write(str(t_res[16].dewp) + ',')
                        metfid.write(str(t_res[16].w_s) + ',')
                        metfid.write(str(t_res[16].w_g) + ',')
                        metfid.write(str(t_res[16].w_d) + ',')
                        metfid.write(str(t_res[16].cld) + ',')
                        if t_res[16].cb:
                            metfid.write('1,')
                        else:
                            metfid.write('0,')
                        metfid.write(str(t_res[16].vis) + ',')
                        metfid.write(str(t_res[16].pres) + '\n')
                    tot_n_ga += 1
                # Otherwise, do the following (doesn't save g/a location etc).
                else:
                    if (do_write):
                        nogfid.write(t_res[1] + ',' + t_res[2] + ',')
                        nogfid.write(t_res[3].strftime(t_frmt) + ',')
                        nogfid.write(t_res[4].strftime(t_frmt) + ',')
                        nogfid.write(t_res[5] + ',')
                        nogfid.write(str(t_res[10]) + ',')
                        nogfid.write(str(t_res[11]) + ',')
                        nogfid.write(str(t_res[12]) + ',')
                        nogfid.write(str(t_res[13]) + ',')
                        nogfid.write(str(t_res[14]) + ',')
                        nogfid.write(str(t_res[15]) + ',')
                        try:
                            outstr = str(t_res[16].temp) + ','
                            outstr = outstr + str(t_res[16].dewp) + ','
                            outstr = outstr + str(t_res[16].w_s) + ','
                            outstr = outstr + str(t_res[16].w_g) + ','
                            outstr = outstr + str(t_res[16].w_d) + ','
                            outstr = outstr + str(t_res[16].cld) + ','
                            if t_res[16].cb:
                                outstr = outstr + '1,'
                            else:
                                outstr = outstr + '0,'
                            outstr = outstr + str(t_res[16].vis) + ','
                            outstr = outstr + str(t_res[16].pres)
                        except Exception as e:
                            print("No METAR data for this flight")
                            outstr = ''
                        nogfid.write(outstr + '\n')

        print("\t-\tHave processed " + str(tot_n_ac) +
              " aircraft. Have seen " + str(tot_n_ga) + " go-arounds.")

    if (do_write):
        metfid.close()
        nogfid.close()
def main():
    indir = '/gf2/eodg/SRP001_PROUD_TURBREP/DULLES_GOAROUND/IN/'
    outdir = '/gf2/eodg/SRP001_PROUD_TURBREP/DULLES_GOAROUND/OUT/'

    files = glob.glob(indir + '*2018*.pkl')
    files.sort()

    do_plots = False
    do_kml = False

    first = True

    counters = 0

    main_types = OSF.make_typlist()

    fli_len = len(files)

    # Number of files to open in one go
    n_files_proc = 24

    plot_lim = 200

    pool_proc = 50

    f_data = []
    pool = mp.Pool(processes=pool_proc)

    for typr in main_types:

        print("Now processing:", typr[0])

        kml = simplekml.Kml(open=1)
        rwy01l = kml.newdocument(name='RWY01L')
        rwy01c = kml.newdocument(name='RWY01C')
        rwy01r = kml.newdocument(name='RWY01R')
        rwy19l = kml.newdocument(name='RWY19L')
        rwy19c = kml.newdocument(name='RWY19C')
        rwy19r = kml.newdocument(name='RWY19R')
        types_list = typr[1]
        outf_format = typr[2]
        for i in range(0, fli_len, n_files_proc):
            print("Processing batch starting with " + str(i + 1).zfill(5) +
                  " of " + str(fli_len).zfill(5))

            p_list = []
            # First we load several files at once
            for j in range(0, n_files_proc):
                if (i + j < fli_len):
                    p_list.append(
                        pool.apply_async(OSF.get_flight,
                                         args=(files[i + j], )))

            for p in p_list:
                t_res = p.get()
                for fli in t_res:
                    f_data.append(fli)
            traf_arr = Traffic.from_flights(f_data)

            p_list = []
            results = []
            f_data = []

            end_time = traf_arr.end_time

            # Now we process the results
            for flight in traf_arr:
                if (flight.stop + timedelta(minutes=5) < end_time):
                    p_list.append(
                        pool.apply_async(p_f,
                                         args=(
                                             flight,
                                             runway_list,
                                             types_list,
                                             do_plots,
                                             do_kml,
                                         )))
                else:
                    f_data.append(flight)

            for p in p_list:
                t_res = p.get()
                results.append(t_res)

            # Below is for either processing method
            for ddi in results:
                if (ddi == None):
                    continue
                if (ddi['ga'] != True):
                    continue
                if (ddi['rwy'] == "01L"):
                    ls = rwy01l.newlinestring()
                elif (ddi['rwy'] == "01C"):
                    ls = rwy01c.newlinestring()
                elif (ddi['rwy'] == "01R"):
                    ls = rwy01r.newlinestring()
                elif (ddi['rwy'] == "19L"):
                    ls = rwy19l.newlinestring()
                elif (ddi['rwy'] == "19C"):
                    ls = rwy19c.newlinestring()
                elif (ddi['rwy'] == "19R"):
                    ls = rwy19r.newlinestring()
                else:
                    print("Unknown runway!", ddi['rwy'])
                    ls = kml.newlinestring()
                ls.name = ddi['callsign']
                ls.description =  ddi['time'].strftime("%Y%m%d%H%M%S") + "\n" +\
                                  ddi['icao24'] + '\n' +\
                                  str(ddi['bdist'])
                ls.style.linestyle.color = simplekml.Color.red
                ls.altitudemode = simplekml.AltitudeMode.relativetoground
                ls.extrude = 0
                for irng in range(0, len(ddi['lats'])):
                    ls.coords.addcoordinates([
                        (ddi['lons'][irng], ddi['lats'][irng],
                         ddi['galt'][irng] / 3.28084)
                    ])

            counters = counters + n_files_proc
            if (counters > plot_lim):
                print("SAVING KML")
                try:
                    kml.save(outdir + outf_format + 'TRAJ.kml')
                except:
                    print("ERROR SAVING KML:",
                          outdir + outf_format + 'TRAJ.kml')
                counters = 0
        kml.save(outdir + outf_format + 'TRAJ.kml')
Пример #24
0
from traffic.data import opensky
from traffic.core import Traffic, Flight

import pandas as pd


start = "2020-02-26"
end = "2020-02-26"
filename = start + "_" + end + "_DCM_recordings.parquet"

if __name__ == "__main__":
    t_dcm = Traffic.from_file(filename)
    print(len(t_dcm.callsigns))

    flight = t_dcm[8]
Пример #25
0
        typer = 'loiter'
        col = 'cyan'
    plt.plot(lons, lats, color=col, linewidth=0.3)
    return


outf1 = '/home/proud/Desktop/test.svg'
outf2 = '/home/proud/Desktop/test.png'
count = 0

aclist = {}

for inf in files:
    print(inf)
#    try:
    indata = Traffic.from_file(inf)
    for flight in indata:
        try:
            acft = aircraft[flight.icao24]
            typ = acft.typecode.values[0]
            if (typ in aclist):
                aclist[typ][0] = aclist[typ][0] + 1
            else:
                aclist[typ] = [1, acft.model.values[0]]
        except KeyboardInterrupt:
            continue
        except Exception as e:
            print("OH", e)
            continue
        continue
        proc_flight(flight)
def main():
    indir = '/gf2/eodg/SRP001_PROUD_TURBREP/GO_AROUNDS/DULLES/IN/'
    outdir = '/gf2/eodg/SRP001_PROUD_TURBREP/GO_AROUNDS/DULLES/OUT/'
    
    dater = datetime(2018,1,1,0,0)

    main_types = OSF.make_typlist()
    # Number of files to open in one go
    n_files_proc = 24

    plot_lim = 200
    
    pool_proc = 50
    
    n_01l = 0
    n_01c = 0
    n_01r = 0
    
    n_19l = 0
    n_19c = 0
    n_19r = 0

    f_data = []
    pool = mp.Pool(processes=pool_proc)
    
    while True:
        files = glob.glob(indir+'*'+dater.strftime("%Y%m%d")+'*.pkl')
        files.sort()
        fli_len = len(files)
        print("Now processing:",dater)

        for typr in main_types:
            
            figs, nums = OSF.setup_figs()
            
            types_list = typr[1]
            outf_format = typr[2]
            for i in range(0, fli_len, n_files_proc):

                p_list = []
                # First we load several files at once
                for j in range(0, n_files_proc):
                    if (i+j < fli_len):
                        p_list.append(pool.apply_async(OSF.get_flight, args=(files[i+j],)))
                    
                for p in p_list:
                    t_res = p.get()
                    for fli in t_res:
                        f_data.append(fli)
                traf_arr = Traffic.from_flights(f_data)
                        
                p_list = []
                results = []
                f_data = []
                
                end_time = traf_arr.end_time
                
                # Now we process the results
                for flight in traf_arr:
                    if (flight.stop + timedelta(minutes=5) < end_time):
                        p_list.append(pool.apply_async(p_f, args=(flight, 
                                                                  runway_list,
                                                                  types_list,)))
                    else:
                        f_data.append(flight)
                    
                for p in p_list:
                    t_res = p.get()
                    results.append(t_res)

                # Below is for either processing method
                for ddi in results:
                    if (ddi == None):
                        continue
                    if (ddi['rwy'] == '01L'):
                        n_01l = n_01l + 1
                    if (ddi['rwy'] == '01C'):
                        n_01c = n_01c + 1
                    if (ddi['rwy'] == '01R'):
                        n_01r = n_01r + 1
                    if (ddi['rwy'] == '19L'):
                        n_19l = n_19l + 1
                    if (ddi['rwy'] == '19C'):
                        n_19c = n_19c + 1
                    if (ddi['rwy'] == '19R'):
                        n_19r = n_19r + 1
                    OSF.add_data_to_fig(ddi, nums)
                    
        OSF.plot_figs(nums, outdir, dater, outf_format)
        dater = dater + timedelta(days = 1)
        print(' -   ',n_01l,n_01c,n_01r,n_19l,n_19c,n_19r)
#        quit()
        if (dater.year > 2018):
            break
Пример #27
0
def plot_latent_and_trajs_outliers(
    t,
    lat,
    outliers,
    savefig,
    nb_top_outliers=10,
    airport="LSZH",
    runway=None,
    plot_callsigns=True,
    re_or_score="re",
):
    outliers = outliers.query("initial_flow != 'N/A'")
    if outliers is None:
        return

    if runway is not None:
        subset = t.query(f"runway == '{runway}' and initial_flow != 'N/A'")
    else:
        subset = t.query("initial_flow != 'N/A'")
    df = pd.DataFrame.from_records([{
        "flight_id": id_,
        "x": x,
        "y": y
    } for (id_, x, y) in zip(
        list(f.flight_id for f in t),
        lat[:, 0],
        lat[:, 1],
    )])
    top_outliers = (
        outliers.query("initial_flow != 'N/A'").groupby("flight_id").agg({
            re_or_score:
            np.mean
        }).sort_values(
            re_or_score,
            ascending=(re_or_score == "score")).head(nb_top_outliers))
    print("\n\ntop outliers\n", top_outliers)
    cols = ["flight_id", "simple", "initial_flow", "cluster"]
    subset = df.merge(subset.data[cols].drop_duplicates())
    subset_o = df.merge(outliers.data, on="flight_id")
    subset_o = top_outliers.merge(subset_o, on="flight_id")

    with plt.style.context("traffic"):
        text_style = dict(
            verticalalignment="top",
            horizontalalignment="right",
            fontname="Ubuntu",
            fontsize=18,
            bbox=dict(facecolor="white", alpha=0.6, boxstyle="round"),
        )
        colors = [
            "#1f77b4",
            "#ff7f0e",
            "#2ca02c",
            "#d62728",
            "#9467bd",
            "#8c564b",
            "#e377c2",
            "#7f7f7f",
            "#bcbd22",
            "#17becf",
        ]

        fig = plt.figure(figsize=(30, 15))
        ax = fig.add_subplot(121)
        m = fig.add_subplot(122, projection=EuroPP())
        m.add_feature(
            countries(edgecolor="white",
                      facecolor="#d9dadb",
                      alpha=1,
                      linewidth=2,
                      zorder=-2))
        m.outline_patch.set_visible(False)
        m.background_patch.set_visible(False)

        airports[airport].point.plot(
            m,
            shift=dict(units="dots", x=-15, y=-15),
            marker=atc_tower,
            s=300,
            zorder=5,
            text_kw={**text_style},
        )

        subset.plot.scatter(
            x="x",
            y="y",
            ax=ax,
            color="#aaaaaa",
            alpha=0.4,
        )
        for (flow, d), color in zip(subset_o.groupby("cluster"), colors):
            d.plot.scatter(x="x",
                           y="y",
                           ax=ax,
                           color=color,
                           label=flow,
                           alpha=0.4,
                           s=100)
            for f in Traffic(d):
                f.plot(
                    m,
                    linewidth=3,
                    label=f"{f.callsign}, {f.stop:%b %d}",
                    color=color,
                )
                if plot_callsigns:
                    point = subset_o.query(
                        f'flight_id == "{f.flight_id}"').iloc[0]
                    ax.text(
                        point.x + 0.5,
                        point.y + 0.5,
                        f"{f.callsign}, {f.stop:%b %d}",
                        **{
                            **text_style,
                            **dict(horizontalalignment="left", fontsize=15),
                        },
                    )
        # ax.legend(prop=dict(family="Ubuntu", size=18))
        ax.grid(linestyle="solid", alpha=0.5, zorder=-2)
        ax.set_xlabel("1st component on latent space", labelpad=10)
        ax.set_ylabel("2nd component on latent space", labelpad=10)

    fig.savefig(savefig)
Пример #28
0
def loadFlights(start_day, end_day):
    filename = getFlightsFilename(start_day, end_day)
    return Traffic.from_file(filename)