def test_train():
    data_dir = os.path.join(here, './data/pytorch')

    # Read in only the first 250 rows
    train_sample = pd.read_csv(os.path.join(data_dir, 'train.csv'), header=None, names=None, nrows=250)

    # Turn the input pandas dataframe into tensors
    train_sample_y = torch.from_numpy(train_sample[[0]].values).float().squeeze()
    train_sample_X = torch.from_numpy(train_sample.drop([0], axis=1).values).long()

    # Build the dataset
    train_sample_ds = torch.utils.data.TensorDataset(train_sample_X, train_sample_y)
    # Build the dataloader
    train_sample_dl = torch.utils.data.DataLoader(train_sample_ds, batch_size=50)

    print(train_sample_y)
    print(train_sample_X)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    embedding_dim = 32
    hidden_dim = 100
    vocab_size = 5000

    model = LSTMClassifier(embedding_dim=embedding_dim,
                           hidden_dim=hidden_dim,
                           vocab_size=vocab_size).to(device)
    print(model)

    with open(os.path.join(data_dir, "word_dict.pkl"), "rb") as f:
        model.word_dict = pickle.load(f)

    optimizer = optim.Adam(model.parameters())
    loss_fn = torch.nn.BCELoss()

    train(model, train_sample_dl, 5, optimizer, loss_fn, device)

    # Save the parameters used to construct the model
    model_dir = os.path.join(here , './data/modelDir')

    model_info_path = os.path.join(model_dir, 'model_info.pth')
    with open(model_info_path, 'wb') as f:
        model_info = {
            'embedding_dim': embedding_dim,
            'hidden_dim': hidden_dim,
            'vocab_size': vocab_size,
        }
        torch.save(model_info, f)

    # Save the word_dict
    word_dict_path = os.path.join(model_dir, 'word_dict.pkl')
    with open(word_dict_path, 'wb') as f:
        pickle.dump(model.word_dict, f)

    # Save the model parameters
    model_path = os.path.join(model_dir, 'model.pth')
    with open(model_path, 'wb') as f:
        torch.save(model.cpu().state_dict(), f)
Пример #2
0
    def test_train_network(self):
        model = LSTMClassifier(embedding_dim=32, hidden_dim=100, vocab_size=500)
        optimizer = optim.Adam(params=model.parameters())
        loss_fn = torch.nn.BCELoss()

        features = torch.randint(low=0, high=500, size=(50, 501))
        labels = torch.randint(low=0, high=1, size=(50,))

        parameters_before_training = copy.deepcopy(model.state_dict())
        loss = train_network(model=model, criterion=loss_fn, features=features, labels=labels, optimiser=optimizer)
        parameters_after_training = copy.deepcopy(model.state_dict())

        self.assertIsNotNone(loss.data.item())
        self.assertFalse(
            compare_model_parameters(parameters_before_training, parameters_after_training))
Пример #3
0
def model_fn(model_dir):
    """Load the PyTorch model from the `model_dir` directory."""
    print("Loading model.")

    # First, load the parameters used to create the model.
    model_info = {}
    model_info_path = os.path.join(model_dir, 'model_info.pth')
    with open(model_info_path, 'rb') as f:
        model_info = torch.load(f)

    print("model_info: {}".format(model_info))

    # Determine the device and construct the model.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = LSTMClassifier(model_info['embedding_dim'],
                           model_info['hidden_dim'], model_info['vocab_size'])

    # Load the stored model parameters.
    model_path = os.path.join(model_dir, 'model.pth')
    with open(model_path, 'rb') as f:
        model.load_state_dict(torch.load(f))

    # Load the saved word_dict.
    word_dict_path = os.path.join(model_dir, 'word_dict.pkl')
    with open(word_dict_path, 'rb') as f:
        model.word_dict = pickle.load(f)

    model.to(device).eval()

    print("Done loading model.")
    return model
Пример #4
0
    parser.add_argument('--num-gpus',
                        type=int,
                        default=os.environ['SM_NUM_GPUS'])

    args = parser.parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("Using device {}.".format(device))

    torch.manual_seed(args.seed)

    # Load the training data.
    train_loader = _get_train_data_loader(args.batch_size, args.data_dir)

    # Build the model.
    model = LSTMClassifier(args.embedding_dim, args.hidden_dim,
                           args.vocab_size).to(device)

    with open(os.path.join(args.data_dir, "word_dict.pkl"), "rb") as f:
        model.word_dict = pickle.load(f)

    print("Model loaded with embedding_dim {}, hidden_dim {}, vocab_size {}.".
          format(args.embedding_dim, args.hidden_dim, args.vocab_size))

    # Train the model.
    optimizer = optim.Adam(model.parameters())
    loss_fn = torch.nn.BCELoss()

    train(model, train_loader, args.epochs, optimizer, loss_fn, device)

    # Save the parameters used to construct the model
    model_info_path = os.path.join(args.model_dir, 'model_info.pth')
            optimizer.step()
            
            total_loss += loss.data.item()
        print("Epoch: {}, BCELoss: {}".format(epoch, total_loss / len(train_loader)))


# Supposing we have the training method above, we will test that it is working by writing a bit of code in the notebook that executes our training method on the small sample training set that we loaded earlier. The reason for doing this in the notebook is so that we have an opportunity to fix any errors that arise early when they are easier to diagnose.

# In[25]:


import torch.optim as optim
from train.model import LSTMClassifier

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = LSTMClassifier(32, 100, 5000).to(device)
optimizer = optim.Adam(model.parameters())
loss_fn = torch.nn.BCELoss()

train(model, train_sample_dl, 5, optimizer, loss_fn, device)


# In order to construct a PyTorch model using SageMaker we must provide SageMaker with a training script. We may optionally include a directory which will be copied to the container and from which our training code will be run. When the training container is executed it will check the uploaded directory (if there is one) for a `requirements.txt` file and install any required Python libraries, after which the training script will be run.

# ### (TODO) Training the model
# 
# When a PyTorch model is constructed in SageMaker, an entry point must be specified. This is the Python file which will be executed when the model is trained. Inside of the `train` directory is a file called `train.py` which has been provided and which contains most of the necessary code to train our model. The only thing that is missing is the implementation of the `train()` method which you wrote earlier in this notebook.
# 
# **TODO**: Copy the `train()` method written above and paste it into the `train/train.py` file where required.
# 
# The way that SageMaker passes hyperparameters to the training script is by way of arguments. These arguments can then be parsed and used in the training script. To see how this is done take a look at the provided `train/train.py` file.